【题目】已知公比为负值的等比数列{an}中,a1a5=4,a4=﹣1.
(1)求数列{an}的通项公式;
(2)设bn= + +…+ ,求数列{an+bn}的前n项和Sn .
【答案】
(1)解:设等比数列{an}的公比为q<0,
∵a1a5=4,a4=﹣1.
∴ , =﹣1,解得q=﹣ ,a1=8.
∴ =
(2)解:∵bn= + +…+
=(n+1)[ +…+ ]
=(n+1)× =n,
∴an+bn= +n,
其前n项和Sn= + = +
【解析】(1)设等比数列{an}的公比为q<0,由a1a5=4,a4=﹣1.可得 , =﹣1,解得即可;(2)由bn= + +…+ =(n+1)[ +…+ ]=n,可得an+bn= +n,再利用等差数列与等比数列的前n项和公式即可得出.
【考点精析】认真审题,首先需要了解等比数列的通项公式(及其变式)(通项公式:),还要掌握数列的前n项和(数列{an}的前n项和sn与通项an的关系)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x= 时,f(x)取得最大值3;当x= 时,f(x)取得最小值﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 是圆的直径,点是圆上异于、的点,直线度平面, 、分别是、的中点.
(Ⅰ)设平面与平面的交线为,求直线与平面所成角的余弦值;
(Ⅱ)设(Ⅰ)中的直线与圆的另一个交点为点,且满足, ,当二面角的余弦值为时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形中, , 为边的中点,将沿直线翻转成.若为线段的中点,则在翻折过程中:
①是定值;②点在某个球面上运动;
③存在某个位置,使;④存在某个位置,使平面.
其中正确的命题是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“随机模拟方法”计算曲线与直线, 所围成的曲边三角形的面积时,用计算机分别产生了10个在区间上的均匀随机数和10个区间上的均匀随机数(, ),其数据如下表的前两行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得这个曲边三角形面积的一个近似值是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,试判断函数f(x)零点个数;
(2)若对x1x2∈R,且x1<x2 , f(x1)≠f(x2),证明方程f(x)= 必有一个实数根属于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件
①当x=﹣1时,函数f(x)有最小值0;
②对任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com