精英家教网 > 高中数学 > 题目详情

【题目】已知公比为负值的等比数列{an}中,a1a5=4,a4=﹣1.
(1)求数列{an}的通项公式;
(2)设bn= + +…+ ,求数列{an+bn}的前n项和Sn

【答案】
(1)解:设等比数列{an}的公比为q<0,

∵a1a5=4,a4=﹣1.

=﹣1,解得q=﹣ ,a1=8.

=


(2)解:∵bn= + +…+

=(n+1)[ +…+ ]

=(n+1)× =n,

∴an+bn= +n,

其前n项和Sn= + = +


【解析】(1)设等比数列{an}的公比为q<0,由a1a5=4,a4=﹣1.可得 =﹣1,解得即可;(2)由bn= + +…+ =(n+1)[ +…+ ]=n,可得an+bn= +n,再利用等差数列与等比数列的前n项和公式即可得出.
【考点精析】认真审题,首先需要了解等比数列的通项公式(及其变式)(通项公式:),还要掌握数列的前n项和(数列{an}的前n项和sn与通项an的关系)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是首项为19公差为-2的等差数列的前项和

1求通项

2是首项为1公比为3的等比数列求数列的通项公式及其前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x= 时,f(x)取得最大值3;当x= 时,f(x)取得最小值﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 =2.718………),

(I) 当时,求函数的单调区间;

(II)当时,不等式对任意恒成立,

求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是平行四边形, 平面的中点, 的中点.

(1)求证: 平面

(2),求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆的直径,点是圆上异于的点,直线度平面 分别是的中点.

(Ⅰ)设平面与平面的交线为,求直线与平面所成角的余弦值;

(Ⅱ)设(Ⅰ)中的直线与圆的另一个交点为点,且满足 ,当二面角的余弦值为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, 为边的中点,将沿直线翻转成.若为线段的中点,则在翻折过程中:

是定值;②点在某个球面上运动;

③存在某个位置,使;④存在某个位置,使平面.

其中正确的命题是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“随机模拟方法”计算曲线与直线 所围成的曲边三角形的面积时,用计算机分别产生了10个在区间上的均匀随机数和10个区间上的均匀随机数 ),其数据如下表的前两行.

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得这个曲边三角形面积的一个近似值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,试判断函数f(x)零点个数;
(2)若对x1x2∈R,且x1<x2 , f(x1)≠f(x2),证明方程f(x)= 必有一个实数根属于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件
①当x=﹣1时,函数f(x)有最小值0;
②对任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案