【题目】已知函数f(x)=(x﹣t)|x|(t∈R).
(1)讨论y=f(x)的奇偶性;
(2)当t>0时,求f(x)在区间[﹣1,2]的最小值h(t).
【答案】
(1)解:当t=0时,f(x)=x|x|,f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x),则f(x)为奇函数;
当t≠0时,f(﹣x)=(﹣x﹣t)|﹣x|≠±f(x),则f(x)为非奇非偶函数
(2)解: .
当 ,即t≥4时,f(x)在[﹣1,0]上单调递增,在[0,2]上单调递减,
所以 ;
当 ,即0<t<4时,f(x)在[﹣1,0]和 单调递增,在 上单调递减,
所以 ,
综上所述,h(t)=
【解析】(1)讨论t=0和t≠0时,f(﹣x)与f(x)的关系,即可判断奇偶性;(2)求出f(x)的分段形式,讨论t≥4时,0<t<4时,函数的单调性,即可得到最小值.
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值),还要掌握函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD底面ABCD, ;
(1)求证:平面PAB平面PCD;
(2)若过点B的直线垂直平面PCD,求证: //平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量X服从正态分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,则P(5<X<6)=( )
A.0.1358
B.0.1359
C.0.2716
D.0.2718
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列对于确定的正整数,若存在正整数使得成立,则称数列为“阶可分拆数列”.
(1)设 是首项为2,公差为2的等差数列,证明为“3阶可分拆数列”;
(2)设数列的前项和为,若数列为“阶可分拆数列”,求实数的值;
(3)设,试探求是否存在使得若数列为“阶可分拆数列”.若存在,请求出所有,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠1),若g(2)=a,则f(2)的值为(
A.
B.2
C.
D.a2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣4|x|+3,x∈R.
(1)判断函数的奇偶性并将函数写成分段函数的形式;
(2)画出函数的图象,根据图象写出它的单调区间;
(3)若函数f(x)的图象与y=a的图象有四个不同交点,则实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面的距离
(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com