精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正四面体ABCD的外接球的体积为4π,求正四面体的体积.

【答案】

【解析】

设正四面体的外接球的半径为R,由已知得R. 如图,连接DEO1D,因为AE为球的直径,故ADDEAEO1D.

ADa,则由已知得O1Da,故AO1a.所以O1E=2RAO1=2a.

由△AO1D∽△DO1EO1D2AO1·O1E,解得a,由此能求出正四面体ABCD的体积.

设正四面体的外接球的半径为R

由已知得πR3=4π,故R.

如图,连接DEO1D,因为AE为球的直径,故ADDEAEO1D.

ADa,则由已知得O1D×aa

AO1a.

所以O1E=2RAO1=2a.

由△AO1D∽△DO1EO1D2AO1·O1E,即a·,解得a (a=0舍去).

故正四面体的体积V×a2·AO1×8×.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】①在同一坐标系中,的图象关于轴对称

是奇函数

③与的图象关于成中心对称

的最大值为

以上四个判断正确有____________________写上序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且圆经过点与点.

(1)求圆的方程;

(2)过点作圆的切线,求切线所在的直线的方程.

【答案】(1);(2).

【解析】试题分析:(1)求出线段的中点,进而得到线段的垂直平分线为,与联立得交点,∴.则圆的方程可求

(2)当切线斜率不存在时,可知切线方程为.

当切线斜率存在时,设切线方程为,由到此直线的距离为,解得,即可到切线所在直线的方程.

试题解析:((1)设 线段的中点为,∵

∴线段的垂直平分线为,与联立得交点

.

∴圆的方程为.

(2)当切线斜率不存在时,切线方程为.

当切线斜率存在时,设切线方程为,即

到此直线的距离为,解得,∴切线方程为.

故满足条件的切线方程为.

【点睛本题考查圆的方程的求法,圆的切线,中点弦等问题,解题的关键是利用圆的特性,利用点到直线的距离公式求解.

型】解答
束】
20

【题目】某小型企业甲产品生产的投入成本(单位:万元)与产品销售收入(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.

(投入成本)

7

10

11

15

17

(销售收入)

19

22

25

30

34

1)求关于的线性回归方程

2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大()?

相关公式 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图(如图),解答下列问题:

分组

频数

频率

[50,60)

4

0.08

[60,70)

8

0.16

[70,80)

10

0.20

[80,90)

16

0.32

[90,100]

合计

(1)填充频率分布表中的空格;

(2)不具体计算频率/组距,补全频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率

(1)求椭圆方程;

(2)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某程序框图如图所示,则该程序运行后输出的值是(

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义两点A(xA , yA),B(xB , yB)间的“L﹣距离”为d(A﹣B)=|xA﹣xB|+|yA﹣yB|.现将边长为1的正三角形按如图所示方式放置,其中顶点A与坐标原点重合,记边AB所在的直线斜率为k(0≤k≤ ),则d(B﹣C)取得最大值时,边AB所在直线的斜率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是双曲线的左右焦点,点在双曲线上,且,则下列结论正确的是( )

A. 则双曲线离心率的取值范围为

B. 则双曲线离心率的取值范围为

C. 则双曲线离心率的取值范围为

D. 则双曲线离心率的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足0<an<1,且an+1+ =2an+ (n∈N*).
(1)证明:an+1<an
(2)若a1= ,设数列{an}的前n项和为Sn , 证明: <Sn ﹣2.

查看答案和解析>>

同步练习册答案