精英家教网 > 高中数学 > 题目详情

【题目】某校要从甲、乙两名同学中选择一人参加该市组织的数学竞赛,已知甲、乙两名同学最近7次模拟竞赛的数学成绩(满分100分)如下:

:79818384859093

乙:75788284909294.

1)完成答题卡中的茎叶图;

2)分别计算甲、乙两名同学最近7次模拟竞赛成绩的平均数与方差,并由此判断该校应选择哪位同学参加该市组织的数学竞赛.

【答案】1)图见解析;(2,选择甲同学

【解析】

1)根据所给数据完成茎叶图即可;

2)分别计算甲、乙两名同学最近7次模拟竞赛成绩的平均数与方差,,而,所以该校应选择甲同学参加该市组织的数学竞赛.

解:(1

2

因为,而,所以该校应选择甲同学参加该市组织的数学竞赛.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种子公司对一种新品种的种子的发芽多少与昼夜温差之间的关系进行分析研究,以便选择最合适的种植条件.他们分别记录了10块试验地每天的昼夜温差和每块实验地里50颗种子的发芽数,得到如下资料:

(1)从上述十组试验数据来看,是否可以判断昼夜温差与发芽数之间具有相关关系?是否具有线性相关关系?

(2)若在一定温度范围内,昼夜温差与发芽数近似满足相关关系:(其中).取后五组数据,利用最小二乘法求出线性回归方程(精确到0.01);

(3)利用(2)的结论,若发芽数试验值与预测值差的绝对值不超过3个就认为正常,否则认为不正常.从上述十组试验中任取三组,至少有两组正常的概率是多少?

:回归直线方程的斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥SABCD的底面ABCD是正方形,SA⊥底面ABCDESC上的一点.

(1)求证:平面EBD⊥平面SAC

(2)SA4AB2,求点A到平面SBD的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,ADBC,平面PAC⊥平面ABCDAB=AD=DC=1

ABC=DCB=60EPC上一点.

Ⅰ)证明:平面EAB⊥平面PAC

Ⅱ)若△PAC是正三角形EPC中点求三棱锥AEBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究表明某地的山高 ()与该山的年平均气温 ()具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是(

A.年平均气温为时该山高估计为

B.该山高为处的年平均气温估计为

C.该地的山高与该山的年平均气温的正负相关性与回归直线的斜率的估计值有关

D.该地的山高与该山的年平均气温成负相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)当a=1时,求函数的单调区间:

(Ⅱ)求函数的极值;

(Ⅲ)若函数有两个不同的零点,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:过点,且离心率为

(Ⅰ)求椭圆C的方程;

(Ⅱ)若过原点的直线与椭圆C交于P、Q两点,且在直线上存在点M,使得为等边三角形,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为.

(1)求的方程;

(2)如图,经过椭圆左顶点且斜率为的直线交于两点,交轴于点,点为线段的中点,若点关于轴的对称点为,过点为坐标原点)垂直的直线交直线于点,且面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

同步练习册答案