精英家教网 > 高中数学 > 题目详情
13.函数f(x)=sin(ωx+ϕ)$(ω>0,0<ϕ<\frac{π}{2})$,f(0)=$\frac{{\sqrt{2}}}{2}$,且对任意${x_1},{x_2}∈(\frac{π}{2},π)$均满足$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0({x_1}≠{x_2})$,则ω的取值范围是$\frac{1}{2}$≤ω≤$\frac{5}{4}$.

分析 根据题意,得出函数的周期T=$\frac{2π}{ω}$≥π,解得ω≤2;
由题意得出f(x)是($\frac{π}{2}$,π)上的单调减函数,得出$\frac{π}{2}$+2kπ<ωx+$\frac{π}{4}$<$\frac{3π}{2}$+2kπ,k∈Z,
由此建立不等关系,求出实数ω的取值范围.

解答 解:函数f(x)=sin(ωx+φ),且f(0)=$\frac{{\sqrt{2}}}{2}$,
∴sinφ=$\frac{\sqrt{2}}{2}$,
又0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{4}$;
又对任意${x_1},{x_2}∈(\frac{π}{2},π)$均满足$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0({x_1}≠{x_2})$,
∴f(x)在($\frac{π}{2}$,π)上是单调减函数,
∴ωx+$\frac{π}{4}$∈($\frac{1}{2}$ωπ+$\frac{π}{4}$,ωπ+$\frac{π}{4}$),
且周期T=$\frac{2π}{ω}$≥π,解得ω≤2;
∵f(x)=sin(ωx+$\frac{π}{4}$)的减区间满足:
$\frac{π}{2}$+2kπ<ωx+$\frac{π}{4}$<$\frac{3π}{2}$+2kπ,k∈Z,
取k=0时,得$\left\{\begin{array}{l}{\frac{1}{2}ωπ+\frac{π}{4}≥\frac{π}{2}}\\{ωπ+\frac{π}{4}≤\frac{3π}{2}}\end{array}\right.$,
解得$\frac{1}{2}$≤ω≤$\frac{5}{4}$.
故答案为:$\frac{1}{2}$≤ω≤$\frac{5}{4}$.

点评 本题考查了函数y=Asin(ωx+φ)的单调性质与图象的变换应用问题,属于综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求AB的长;
(2)当弦被点P0平分时,写出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点E、F的坐标分别是(-2,0)、(2,0),直线EP、FP相交于点P,且它们的斜率之积为$-\frac{1}{4}$.
(1)求证:点P的轨迹在一个椭圆C上,并写出椭圆C的方程;
(2)设过原点O的直线AB交(1)中的椭圆C于点A、B,定点M的坐标为$(1,\frac{1}{2})$,试求△MAB面积的最大值,并求此时直线AB的斜率kAB

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数$y=m{(\frac{1}{4})^x}-{(\frac{1}{2})^x}$+1仅有一个零点,则实数m 的取值范围是m≤0或$m=\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在下列A、B、C、D四个图象中,大致为函数y=2|x|-x2(x∈R)的图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x•|x|-2x.
(1)判断函数f(x)的奇偶性,并证明;
(2)若方程f(x)=m有三个不同实根时,求实数m的取值范围;
(3)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)={x^2}+lg(x+\sqrt{{x^2}+1})$,若f(a)=M,则f(-a)等于(  )
A.2a2-MB.M-2a2C.2M-a2D.a2-2M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知tanα=-3,借助三角函数定义求sinα和cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P所在轨迹的极坐标方程为ρ=2cosθ,点Q所在轨迹的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4+2t}\end{array}\right.$(t为参数),则|PQ|的最小值是(  )
A.2B.$\frac{4\sqrt{5}}{5}$+1C.1D.$\frac{4\sqrt{5}}{5}$-1

查看答案和解析>>

同步练习册答案