精英家教网 > 高中数学 > 题目详情

【题目】一个盒子中装有4个形状大小完全相同的球,球的编号分别为1,2,3,4.

(1)从盒子中不放回随机抽取两个球,求取出的球的编号之和不大于4的概率;

(2)先从盒子中随机取一个球,该球的编号为,将球放回盒子中,然后再从盒子中随机取一个球,该球的编号为,求的概率.

【答案】(1)(2)

【解析】试题分析:(1)根据列举法表示所有取到2个不同小球的组合情况,并计算其中两个小球和不大于4的个数,相除即时概率;(2)列举出所有的组合情况,并且计算其中满足条件的个数,利用对立事件求概率,或是直接计算的个数,并计算概率.

试题解析:(1)从袋中随机抽取两个球,其一切可能的结果组成的基本事件有12,1

3,14,23,24,34,共6个.

从袋中取出的球的编号之和不大于4的事件共有12,13两个.

因此所求事件的概率p

(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记

下编号为n,其一切可能的结果(mn)有:

(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.

又满足条件的事件为(1,3),(1,4),(2,4),共3个,

满足条件的事件的概率为

所以条件的事件的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a=(5cos x,cos x),b=(sin x,2cos x),设函数f(x)=a·b+|b|2.

(1) 求函数f (x)的最小正周期和对称中心

(2) 时,求函数f(x)的值域;

(3) 该函数y=f (x)的图象可由的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;

③线性回归直线必过

④曲线上的点与该点的坐标之间具有相关关系;

⑤在一个2×2列联表中,由计算得K2=13.079.则其两个变量间有关系的可能性是90%.

其中错误的个数是( )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,角的内角,其所对的边分别为.

(1)当取得最大值时,求角的大小;

(2)在(1)成立的条件下,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图, 弧AC 长为 ,弧A1B1 长为 ,其中B1与C在平面AA1O1O的同侧.

(1)求圆柱的体积与侧面积;
(2)求异面直线O1B1与OC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员,每次击中目标的概率都是.现采用随机模拟的方法估计该运动员射击次至少击中次的概率:先由计算器算出之间取整数值的随机数,指定表示没有击中目标,表示击中目标;因为射击次,故以每个随机数为一组,代表射击次的结果.经随机模拟产生了如下组随机数:

据此估计,该射击运动员射击次至少击中次的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经销某商品,根据以往资料统计,顾客采用的付款期数X的分布列为

X

1

2

3

4

5

P

0.4

0.2

0.2

0.1

0.1

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.Y表示经销一件该商品的利润.

(1)求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);

(2)求Y的分布列及E(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线上的点到点的距离与到直线的距离之差为,过点的直线交抛物线于两点.

(1)求抛物线的方程;

(2)若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a=1时,若方程f(x)=t在 上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m

查看答案和解析>>

同步练习册答案