精英家教网 > 高中数学 > 题目详情

【题目】在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ4cosθ,直线C2的参数方程为t为参数).

1)求曲线C1的直角坐标方程和直线C2的普通方程;

2)若P10),直线C2与曲线C1相交于AB两点,求|PA||PB|的值.

【答案】(1)曲线C1x2+y24x0;直线C2xsinαycosαsinα0(2)3

【解析】

1)求曲线C1的直角坐标方程需利用直角坐标与极坐标关系互化关系式xρcosθyρsinθx2+y2ρ2,将ρ4cosθ,等式两边乘ρρ24ρcosθ代入即可,直线C2的参数方程消去参数t即为普通方程;

2)因为P10)在直线C2上,将直线C2的参数方程t为参数)代入曲线C1x2+y24x0,设AB对应的参数分别为t1t2,根据根与系数关系可得则t1t2=﹣3,故可求|PA||PB||t1t2|3.

1)曲线C1的极坐标方程为ρ4cosθ,由xρcosθyρsinθx2+y2ρ2

可得ρ24ρcosθ,即为x2+y24x0

直线C2的参数方程为t为参数),

可得xsinαycosαsinα0

2)因为P10)在直线C2上,

将直线C2的参数方程t为参数)代入x2+y24x0

可得(1+tcosα2+tsinα241+tcosα)=0

化为t22tcosα30

AB对应的参数分别为t1t2,则t1t2=﹣3

可得|PA||PB||t1t2|3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是定义在R上的两个函数,满足 满足,且当时,.若在区间上,关于的方程8个不同的实数根,则k的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处切线的斜率为1.

(1)求的值;

(2)设,若对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数,当时,

则函数的所有零点之和为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinxcosxcos2x+1

1)求fx)的最小正周期和最大值,并写出取得最大值时x的集合;

2)将fx)的函数图象向左平移φφ0)个单位后得到的函数gx)是偶函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以数列的任意相邻两项为坐标的点,均在一次函数y=2x+k的图象上,数列满足,且.

1)求证数列为等比数列,并求出数列的公比;

2)设数列的前n项和分别为SnTn,若S6=T4S5=9,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对某市工薪阶层关于楼市限购令的态度进行调查,随机抽调了50,他们月收入的频数分布及对楼市限购令赞成人数如表:

月收入(单位百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

()由以上统计数据填下面2×2列联表并问是否有99%的把握认为月收入以5500为分界点楼市限购令的态度有差异;

月收入低于55百元的人数

月收入不低于55百元的人数

合计

赞成

不赞成

合计

()若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3红包奖励,求收到红包奖励的3人中至少有1人收入在[15,25)的概率.

参考公式:K2,其中n=a+b+c+d.

参考数据:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点.若曲线上存在两点,使为正三角形,则称型曲线.给定下列三条曲线:

其中型曲线的个数是

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式为,其中.

(1)试写出一组的值,使得数列中的各项均为正数.

(2),数列满足,且对任意的(),均有,写出所有满足条件的的值.

(3),数列满足,其前项和为,且使()有且仅有组,中有至少个连续项的值相等,其它项的值均不相等,求的最小值.

查看答案和解析>>

同步练习册答案