精英家教网 > 高中数学 > 题目详情
14.已知0<x<$\frac{π}{2}$,且tan(x-$\frac{π}{4}$)=-$\frac{1}{7}$,则sinx+cosx=$\frac{7}{5}$.

分析 利用两角差的正切公式求出tanx的值,又根据已知条件列出方程组,求解即可得到sinx,cosx的值,代入sinx+cosx计算得答案.

解答 解:∵tan(x-$\frac{π}{4}$)=-$\frac{1}{7}$,
∴$\frac{tanx-1}{1+tanx}$=$-\frac{1}{7}$,则tanx=$\frac{3}{4}$
又0<x<$\frac{π}{2}$,
∴$\left\{\begin{array}{l}{\frac{sinx}{cosx}=\frac{3}{4}}\\{si{n}^{2}x+co{s}^{2}x=1}\end{array}\right.$,解得sinx=$\frac{3}{5}$,cosx=$\frac{4}{5}$,
则sinx+cosx=$\frac{3}{5}+\frac{4}{5}=\frac{7}{5}$.
故答案为:$\frac{7}{5}$.

点评 本题考查了同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2),
②f(x1•x2)=f(x1)+f(x2),
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,
④$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$,
当f(x)=lnx时,上述结论中正确结论的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a>b>c,a+b+c=0,则下列各是正确的是(  )
A.ab>acB.ac>bcC.a|b|>|b|cD.ab>bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面之间坐标系中,角α的终边经过点P(1,2).
(1)求tanα的值;
(2)求$\frac{sinα+2cosα}{2sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是(  )
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,△PAD为正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E为棱PB的中点
(Ⅰ)求证:平面PAB⊥平面CDE;
(Ⅱ)若直线PC与平面PAD所成角为45°,求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于函数f(x)=x3-3x2+6x的单调性是(  )
A.增函数B.先增后减C.先减后增D.减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若存在常数k(k∈N*,k≥2)、q、d,使得无穷数列{an}满足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$则称数列{an}为“段比差数列”,其中常数k、q、d分别叫做段长、段比、段差.设数列{bn}为“段比差数列”.
(1)若{bn}的首项、段长、段比、段差分别为1、3、q、3.
①当q=0时,求b2016
②当q=1时,设{bn}的前3n项和为S3n,若不等式${S_{3n}}≤λ•{3^{n-1}}$对n∈N*恒成立,求实数λ的取值范围;
(2)设{bn}为等比数列,且首项为b,试写出所有满足条件的{bn},并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\frac{1}{x-1}$.关于f(x)的性质,给出下面四个判断:
①f(x)的定义域是R;
②f(x)的值域是R;
③f(x)是减函数;
④f(x)的图象是中心对称图形.
其中正确的判断是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案