精英家教网 > 高中数学 > 题目详情

【题目】已知点分别是椭圆的左右顶点, 为其右焦点, 的等比中项是,椭圆的离心率为.

(1)求椭圆的方程;

(2)设不过原点的直线与该轨迹交于两点,若直线的斜率依次成等比数列,求的面积的取值范围.

【答案】(1) ;(2) .

【解析】试题分析:(1)利用 的等比中项,得到结合椭圆得离心率求解即可(2)依题意知直线的斜率存在且不为0设直线 联立直线和椭圆消去可得,利用判别式以及韦达定理,通过 的斜率依次成等比数列,推出,求出 ,且,然后求出点到直线的距离,表示出三角形面积,求解范围即可.

试题解析:(1) 的等比中项,

,又,解得

∴椭圆的方程为.

(2)由题意可知,直线的斜率存在且不为0,故可设直线

联立直线和椭圆,消去得,

由题意可知,

又直线 的斜率依次成等比数列,所以

代入并整理得

因为 ,且

为点到直线的距离,则有

∴三角形面积的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x的不等式xex﹣2ax+a<0的非空解集中无整数解,则实数a的取值范围是(
A.[
B.[
C.[ ,e]
D.[ ,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司共有60位员工,为提高员工的业务技术水平,公司拟聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付400元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则每人收取培训费1000元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为x人,此次培训的总费用为y元.

(1)求出yx之间的函数关系式;

(2)请你预算:公司此次培训的总费用最多需要多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆的半径为,是圆上的一个动点,的中垂线于点,以直线轴,的中垂线为轴建立平面直角坐标系。

(Ⅰ)若点的轨迹为曲线,求曲线的方程;

(Ⅱ)设点为圆上任意一点,过作圆的切线与曲线交于两点,证明:以为直径的圆经过定点,并求出该定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面 中点.

(1)证明:直线平面

(2)点在棱上,且直线与底面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1axby-1=0(ab不同时为0),l2:(a+2)xya=0.

(1)b=0l1l2求实数a的值

(2)b=2,l1l2求直线l1l2之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.

(1)确定y=g(x),y=f(x)的解析式

(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;

(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过点作圆的切线,切点分别为.直线恰好经过的右顶点和上顶点.

1)求椭圆的方程;

2)如图,过椭圆的右焦点作两条互相垂直的弦

①设中点分别为,证明:直线必过定点,并求此定点坐标;

②若直线 的斜率均存在时,求由四点构成的四边形面积的取值范围.

查看答案和解析>>

同步练习册答案