精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex(x2+x+a)在(0,f(0))处的切线与直线2x﹣y﹣3=0平行,其中a∈R.
(1)求a的值;
(2)求函数f(x)在区间[﹣2,2]上的最值.

【答案】
(1)解:f′(x)=ex(x2+3x+a+1),

故f′(0)=a+1,而切线的斜率是2,

故a+1=2,解得:a=1


(2)解:由(1)得f(x)=ex(x2+x+1),

f′(x)=ex(x+1)(x+2),

令f′(x)>0,解得:x>﹣1或x<﹣2,

令f′(x)<0,解得:﹣2<x<﹣1,

故函数f(x)在[﹣2,﹣1)递减,在(﹣1,2]递增,

而f(﹣2)= ,f(﹣1)= ,f(2)=7e2

故f(x)在[﹣2,2]的最小值是 ,最大值是7e2


【解析】(1)求出函数的导数,计算f′(0)=2,求出a的值即可;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 的定义域为集合 ,函数 的定义域为集合 .
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=an﹣2anan+1 , an≠0且a1=1.
(1)求数列{an}的通项公式;
(2)令 ,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的a值为(
A.﹣3
B.
C.﹣
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A , 接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km到达公路的另一点C.现准备在储备基地的边界上选一点D , 修建一条由D通往公路BC的专用线DE , 求DE的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为 ,曲线C2的极坐标方程为
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,Q曲线C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】①“x∈R,x2﹣3x+3=0”的否定是真命题; ②“ ”是“2x2﹣5x﹣3<0”必要不充分条件;
③“若xy=0,则x,y中至少有一个为0”的否命题是真命题;
④曲线 与曲线 有相同的焦点;
⑤过点(1,3)且与抛物线y2=4x相切的直线有且只有一条.
其中是真命题的有:(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x+cos2x.
(1)当x∈[0, ]时,求f(x)的取值范围;
(2)求函数y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P为椭圆 =1上的动点,EF为圆N:x2+(y﹣1)2=1的任一直径,求 最大值和最小值是(
A.16,12﹣4
B.17,13﹣4
C.19,12﹣4
D.20,13﹣4

查看答案和解析>>

同步练习册答案