精英家教网 > 高中数学 > 题目详情

如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

解:(Ⅰ)∵ABCD-A1B1C1D1为正方体,∴B1C1⊥平面AA1B1B;
∵A1B⊆平面AA1B1B,∴B1C1⊥A1B. …(2分)
又∵正方形AA1B1B中,A1B⊥AB1,且B1C1、AB1是平面ADC1B1内的相交直线
∴A1B⊥平面ADC1B1.…(4分)
∵A1B⊆平面A1BE,∴平面ADC1B1⊥平面A1BE.…(6分)
(Ⅱ)当点F为C1D1中点时,可使B1F∥平面A1BE.…(7分)
证明如下:
∵△C1D1D中,EF是中位线,∴EF∥C1D且EF=C1D,…(9分)
设AB1∩A1B=O,则平行四边形AB1C1D中,B1O∥C1D且B1O=C1D,
∴EF∥B1O且EF=B1O,
∴四边形BEF∥B1OEF为平行四边形,B1F∥OE.…(11分)
∵B1F?平面A1BE,OE⊆平面A1BE,
∴B1F∥平面A1BE …(13分)
分析:(I)由B1C1⊥平面AA1B1B,得B1C1⊥A1B.结合正方形AA1B1B中,A1B⊥AB1,可得A1B⊥平面ADC1B1.最后根据面面垂直的判定定理,得到平面ADC1B1⊥平面A1BE;
(II)设AB1∩A1B=O,取C1D1中点F,连接OE、EB、B1F.根据三角形中位线定理,得EF∥C1D且EF=C1D,平行四边形AB1C1D中,有B1O∥C1D且B1O=C1D,从而得到EF∥B1O且EF=B1O,四边形BEF∥B1OEF为平行四边形,B1F∥OE,所以B1F∥平面A1BE,即存在C1D1中点F,使B1F∥平面A1BE.
点评:本题在正方体中,证明面面垂直并且探索线面平行的存在性,着重考查了正方体的性质、线面平行的判定,以及线面垂直、面面垂直的判定与性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点
(1)若F为AA1的中点,求证:EF∥面DD1C1C;
(2)若F为AA1的中点,求二面角A-EC-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

12、如图所示,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝山区二模)如图所示,在正方体ABCD-A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1和直线BC的距离相等,则动点P所在曲线形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正方体ABCD-A1B1C1D1中,点E是棱CC1上的一个动点,平面BED1交棱AA1于点F.则下列命题中假命题是(  )

查看答案和解析>>

同步练习册答案