精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极小值.

(1)求实数的值;

(2)设,其导函数为,若的图象交轴于两点,设线段的中点为,试问是否为的根?说明理由.

【答案】(1)(2)不是的根.

【解析】试题分析:(1)先求导数,再根据,解得,最后列表验证(2)即研究是否成立,因为,利用

,所以=0,转化为.其中,最后利用导数研究函数单调性,确定方程解的情况

试题解析:(1)因为

所以

因为函数处取得极小值,

所以,即

所以

所以

时, ,当 时,

所以上单调递减,在上单调递增.

所以处取得极小值,符合题意.

所以.

(2)由(1)知函数.

∵函数图象与轴交于两个不同的点,( ),

.

两式相减得

.

.

下解.

.

,∵,∴

.

.

,∴

上是増函数,则

从而知

,即不成立.

不是的根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

设函数.

(1)的单调区间和极值;

(2)若关于的方程有3个不同实根,求实数a的取值范围;

(3)已知当恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)当m=3时,求集合A∩B,A∪B;
(2)若BA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c且cos2B+3cosB﹣1=0.
(1)求角B的大小;
(2)若a+c=1,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)请在直角坐标系中画出函数f(x)的图象,并写出该函数的单调区间;
(2)若函数g(x)=f(x)﹣m恰有3个不同零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a4=5,a2+a8=14,数列{bn}满足b1=1,bn+1=2 bn
(1)求数列{an}和{bn}的通项公式;
(2)求数列{ }的前n项和;
(3)若cn=an ,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中实数为常数且.

I)求函数的单调区间;

II)若函数既有极大值,又有极小值,求实数的取值范围及所有极值之和;

III)在(II)的条件下,记分别为函数的极大值点和极小值点,

求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: 的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为,且恰好构成等比数列,记△的面积为S.

(1)求椭圆C的方程.

2)试判断是否为定值?若是,求出这个值;若不是,请说明理由?

(3)求S的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某环保节能设备生产企业的产品供不应求,已知某种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=150﹣ x,每套的售价不低于90万元;月产量x(套)与生产总成本y2(万元)之间满足关系式y2=600+72x,则月生产多少套时,每套设备的平均利润最大?最大平均利润是多少?

查看答案和解析>>

同步练习册答案