精英家教网 > 高中数学 > 题目详情

【题目】(本小题共13分)根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示

1)求上图中的值;

2)甲队员进行一次射击,求命中环数大于7环的概率(频率当作概率使用);

3)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定(结论不需证明)

【答案】(1; (20.75;(3)甲队员的射击成绩更稳定.

【解析】试题分析:()由频率和为1可求的值。()环数大于7环包含环数为8环、9环、10环三个基本事件,而这三个事件两两互斥,所以命中环数大于7环的概率为三个事件概率的和。()甲队员的射击成绩较集中、波动较小,相对稳定。

试题解析:解:()由上图可得,

所以4

)设事件A甲队员射击,命中环数大于7,它包含三个两两互斥的事件:甲队员射击,命中环数为8环,9环,10.

所以9

)甲队员的射击成绩更稳定. 13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.

(1)求 (2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,则说明理由;

(3)关于的方程上恰有两个相异实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若的部分图像如图所示的解析式

(2)在(1)的条件下,求最小正实数使得函数的图象向左平移个单位后所对应的函数是偶函数

(3)若上是单调递增函数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形, 平面 .

(1)求证:

(2)若直线平面,试判断直线与平面的位置关系,并说明理由;

(3)若 ,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的极坐标方程,并说明其表示什么轨迹;

(2)若直线的极坐标方程为,求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.

(1)求证:BC1∥平面CA1D;(2)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某棋类游戏的规则如下:棋子的初始位置在起点处,玩家每掷出一枚骰子,朝上一面的点数即为向终点方向前进的格子数,(比如玩家一开始掷出的骰子点数为3,则走到炸弹所在位置),若踩到炸弹则返回起点重新开始,若达到终点则游戏结束.现在已知小明掷完三次骰子后游戏恰好结束,则所有不同的情况种数__________.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会”、“演讲团”、“吉他协会”五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中至多有1人参加“演讲团”的不同参加方法数为( )

A. 4680 B. 4770 C. 5040 D. 5200

查看答案和解析>>

同步练习册答案