【题目】设数列{an}的前n项和为Sn,a1=3,且Sn=nan+1-n2-n.
(1)求{an}的通项公式;
(2)若数列{bn}满足,求{bn}的前n项和Tn.
科目:高中数学 来源: 题型:
【题目】某班要从5名男生3名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数.
(1)所安排的女生人数必须少于男生人数;
(2)其中的男生甲必须是课代表,但又不能担任数学课代表;
(3)女生乙必须担任语文课代表,且男生甲必须担任课代表,但又不能担任数学课代表.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人是“微信控”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知定点,点P是圆上任意一点,线段的垂直平分线与半径相交于点.
(1)当点在圆上运动时,求点的轨迹方程;
(2)过定点且斜率为的直线与的轨迹交于两点,若,求点到直线的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某电视娱乐节目的游戏活动中,每人需完成A、B、C三个项目.已知选手甲完成A、B、C三个项目的概率分别为、、.每个项目之间相互独立.
(1)选手甲对A、B、C三个项目各做一次,求甲至少完成一个项目的概率.
(2)该活动要求项目A、B 各做两次,项目C做三次.若两次项目A均完成,则进行项目B,并获得积分a;两次项目B均完成,则进行项目C,并获积分3a;三次项目C只要两次成功,则该选手闯关成功并获积分6a(积分不累计),且每个项目之间互相独立.用X表示选手甲所获积分的数值,写出X的分布列并求数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(a>0且a≠1).
(1)若f(x)为定义域上的增函数,求实数a的取值范围;
(2)令a=e,设函数,且g(x1)+g(x2)=0,求证:x1+x2≥2+.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com