精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若存在实数 ,使 成立,则称的不动点.

(1)当时,求的不动点;

(2)若对于任意的实数 函数 恒有两个相异的不动点,求实数的取值范围;

(3)在(2)的条件下,若的图象上 两点的横坐标是函数 的不动点,且直线 是线段的垂直平分线,求实数的取值范围.

【答案】(1);(2)(3).

【解析】

(1)为不动点则有,变形为,解方程即可;(2)转化为由已知,此方程有相异二实根则有恒成立,可得可得结果;(3)由垂直平分线的定义解答两点的横坐标是函数的不动点,则有 ,再由直线是线段的垂直平分线得到再由中点在直线上可得利用基本不等式求解即可.

(1)当

为其不动点,

,

的不动点是.

(2)

由已知,此方程有相异二实根则有恒成立

对任意恒成立,

.

(3)

直线是线段的垂直平分线

的中点由(2)知

化简得(当时,等号成立

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线 与椭圆 在第一象限的交点为 为坐标原点, 为椭圆的右顶点, 的面积为.

求抛物线的方程;

点作直线 两点,射线分别交两点,记的面积分别为,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线处的切线方程;

2)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC中,角A,B,C所对的边分别为a,b,c,则“∠C>90°”的一个充分非必要条件是(
A.sin2A+sin2B<sin2C
B.sinA= ,(A为锐角),cosB=
C.c2>2(a+b﹣1)
D.sinA<cosB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆x2+y2=12与抛物线x2=4y相交于A,B两点,F为抛物线的焦点,若过点F且斜率为1的直线l与抛物线和圆交于四个不同的点,从左至右依次为P1 , P2 , P3 , P4 , 则|P1P2|+|P3P4|的值 , 若直线m与抛物线相交于M,N两点,且与圆相切,切点D在劣弧 上,则|MF|+|NF|的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据我国颁布的《环境空气质量指数()技术规定》 :空气质量指数划分为和大于300共六个等级,对应的空气质量指数的六个等级,指数越大,等级越高 ,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数不大于150时,可以进行户外活动;当空气质量指数为151及以上时,不适合进行旅游等户外活动,下表是某市2017年11月中旬的空气质量指数情况:

时间

11日

12日

13日

14日

15日

16日

17日

18日

19日

20日

142

141

125

249

129

87

68

106

238

270

(1)该市某市民在上述10天中随机选取1天进行户外活动,求该市民选取的这一天恰好不适合进行户外活动的概率;

(2)一名外地游客计划在上述10天中到市连续旅游2天求这10天中适合他旅游的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义在[-1,+∞)上的函数的图象由一条线段及抛物线的一部分组成.

(1)的值及的解析式;

(2)f(x)=,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.

)求椭圆的方程.

)过定点的动直线,交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案