精英家教网 > 高中数学 > 题目详情
以知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点E(
a2
c
,0)
的直线与椭圆相交于A,B两点,且F1AF2B,|F1A|=2|F2B|.
(1)求椭圆的离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求
n
m
的值.
(1)由F1AF2B且|F1A|=2|F2B|,
|
EF2
EF1
|=|
F2B
F1A
|=
1
2
,从而
a2
c
-c
a2
c
+c
=
1
2

整理,得a2=3c2,故离心率e=
c
a
=
3
3

(2)由(I)得b2=a2-c2=2c2
所以椭圆的方程可写为2x2+3y2=6c2
设直线AB的方程为y=k(x-
a2
c
)
,即y=k(x-3c).
由已知设A(x1,y1),B(x2,y2),
则它们的坐标满足方程组
y=k(x-3c)
2x2+3y2=6c2

消去y整理,得(2+3k2)x2-18k2cx+27k2c2-6c2=0.
依题意,△=48c2(1-3k2)>0,得-
3
3
<k<
3
3

x1+x2=
18k2c
2+3k2

x1x2=
27k2c2-6c2
2+3k2

由题设知,点B为线段AE的中点,所以x1+3c=2x2
联立①③解得x1=
9k2c-2c
2+3k2
x2=
9k2c+2c
2+3k2

将x1,x2代入②中,解得k=±
2
3

(III)解法一:由(II)可知x1=0,x2=
3c
2

k=-
2
3
时,得A(0,
2
c)
,由已知得C(0,-
2
c)

线段AF1的垂直平分线l的方程为y-
2
2
c=-
2
2
(x+
c
2
)
直线l与x轴
的交点(
c
2
,0)
是△AF1C外接圆的圆心,
因此外接圆的方程为(x-
c
2
)2+y2=(
c
2
+c)2

直线F2B的方程为y=
2
(x-c)

于是点H(m,n)的坐标满足方程组
(m-
c
2
)2+n2=
9c2
4
n=
2
(m-c)

由m≠0,解得
m=
5
3
c
n=
2
2
3
c
n
m
=
2
2
5

k=
2
3
时,同理可得
n
m
=-
2
2
5

解法二:由(II)可知x1=0,x2=
3c
2

k=-
2
3
时,得A(0,
2
c)
,由已知得C(0,-
2
c)

由椭圆的对称性可知B,F2,C三点共线,
因为点H(m,n)在△AF1C的外接圆上,
且F1AF2B,所以四边形AF1CH为等腰梯形.
由直线F2B的方程为y=
2
(x-c)

知点H的坐标为(m,
2
m-
2
c)

因为|AH|=|CF1|,所以m2+(
2
m-
2
c-
2
c)2=a2
,解得m=c(舍),或m=
5
3
c

n=
2
2
3
c
,所以
n
m
=
2
2
5
.当k=
2
3
时同理可得
n
m
=-
2
2
5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆中心在原点,它在x轴上的一个焦点与短轴两端点的连线互相垂直,并且这个焦点到椭圆的最短距离为4(
2
-1),则椭圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若P为椭圆
x2
9
+
y2
6
=1
上一点,F1和F2为椭圆的两个焦点,∠F1PF2=60°,则|PF1|•|PF2|的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A为椭圆
x2
a2
+
y2
b1
=1(a>b>0)上的一个动点,弦AB、AC分别过焦点F1、F2,当AC垂直于x轴时,恰好有AF1:AF2=3:1.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设
AF1
1
F1B
AF2
2
F2C

①当A点恰为椭圆短轴的一个端点时,求λ12的值;
②当A点为该椭圆上的一个动点时,试判断是λ12否为定值?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(  )
A.=1B.=1
C.=1D.=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为
A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与双曲线的右焦点重合,则的值为(    ).
A.B.C.D.

查看答案和解析>>

同步练习册答案