精英家教网 > 高中数学 > 题目详情
设函数f(x)=(1-x)(2-x)(3-x)(4-x),则f/(x)=0有( )
A.四个实根xi=i(i=1,2,3,4)
B.分别位于区间(1,2)(2,3)(3,4)内三个根
C.分别位于区间(0,1)(1,2)(2,3)内三个根
D.分别位于区间(0,1)(1,2)(2,3)(3,4)内四个根
【答案】分析:先化简f(x),用积的导数法则求f′(x),再用根的存在性定理判断根的情况.
解答:解:f(x)=(1-x)(2-x)(3-x)(4-x)=(x2-5x+4)(x2-5x+6)
∴f′(x)=(2x-5)(x2-5x+6)+(x2-5x+4)(2x-5)=2(2x-5)(x2-5x+5)
∵f′(1)=-3<0,f′(2)=2>0,f′(3)=-2<0,f′(4)=3>0
∴f′(x)=0分别位于区间(1,2)(2,3)(3,4)内三个根
故选项为B
点评:本题考查积的导数法则和根的存在性定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区二模)记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素.
(1)判断函数f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)设函数f(x)=log2(1-2x),求f(x)的反函数f-1(x),并判断f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素,
例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素,并求f(x)的反函数f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)设正数P1,P2,P3,…P2n满足P1+P2+…P2n=1,求证:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步练习册答案