精英家教网 > 高中数学 > 题目详情

【题目】设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,P是椭圆上一点,|PF1|=λ|PF2|,∠F1PF2=,则椭圆离心率的取值范围为(  )

A. B. C. D.

【答案】B

【解析】

设焦点F1(-c,0),F2(c,0),运用椭圆的定义和勾股定理,求得e2=,令m=λ+1,可得λ=m-1,即有=,进而求得离心率的取值范围范围.

设F1(-c,0),F2(c,0),由椭圆的定义可得,|PF1|+|PF2|=2a,

可设|PF2|=t,可得|PF1|=λt,

即有(λ+1)t=2a①

由∠F1PF2= ,可得|PF1|2+|PF2|2=4c2

即为(λ2+1)t2=4c2,②

由②÷①2,可得e2=m=λ+1,可得λ=m-1,

即有

≤e2,解得,≤e≤.故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】购买一件售价为5 000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月付款一次,过1个月再付款一次,如此下去,到第12次付款后全部付清.如果月利率为0.8%,每月利息按复利计算(上月利息计入下月本金),那么每期应付款多少元?(精确到1元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为椭圆的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.

(1)若椭圆的离心率为,求椭圆的方程;

(2)设为椭圆上一点,且在第一象限内,直线轴相交于点,若以为直径的圆经过点,证明:点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:m>2,则方程x2+2x+3m=0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=10n﹣n2(n∈N*),又bn=|an|(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通部门对某路段公路上行驶的汽车速度实施监控,从速度在50﹣90km/h的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在70km/h以下的汽车有辆.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,已知椭圆C: =1(a>b>0)的离心率e= ,左顶点为A(﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.

(1)求椭圆C的方程;
(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;
(3)若过O点作直线l的平行线交椭圆C于点M,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中如像招数五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升。其大意为官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3,在该问题中第3天共分发大米(

A. 192 B. 213 C. 234 D. 255

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.

(1)求证:AC平分∠BAD;
(2)求BC的长.

查看答案和解析>>

同步练习册答案