精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.

(1)证明:BD⊥平面ABB1A1

(2)比较四棱锥D—ABB1A1与四棱锥D—A1B1C1D1的体积的大小.

【答案】(1)见解析; (2)见解析.

【解析】

(1)通过证明AB⊥BD和AA1⊥BD即可得证;

(2)根据条件分别求,然后比较大小即可.

(1)证明:∵AB2+BD2=AD2=2,

∴AB⊥BD.

又AA1⊥平面ABCD,∴AA1⊥BD.

∵AB∩AA1=A,∴BD⊥平面ABB1A1

(2)∵AB=BD且AB⊥BD,∴∠ADB=45°.

又AD∥BC,∴∠CBD=∠ADB=45°,∴

∴四边形ABCD的面积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为.

1)求椭圆的方程;

2)过点作两条互相垂直的弦分别与椭圆交于点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Ox2y2=1和定点A(2,1),由圆O外一点P(ab)向圆O引切线PQ切点为Q,|PQ|=|PA|成立如图.

(1)ab间的关系

(2)|PQ|的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于分的选手定为合格选手,直接参加第二轮比赛,大于等于分的选手将直接参加竞赛选拔赛.已知成绩合格的名参赛选手成绩的频率分布直方图如图所示,其中的频率构成等比数列.

1)求的值;

2)估计这名参赛选手的平均成绩;

3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为,假设每名选手能否通过竞赛选拔赛相互独立,现有名选手进入竞赛选拔赛,记这名选手在竞赛选拔赛中通过的人数为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强学生体质,合肥一中组织体育社团,某班级有4人积极报名参加篮球和足球社团,每人只能从两个社团中选择其中一个社团,大家约定:每个人通过掷一枚质地均匀的骰子决定自己参加哪个社团,掷出点数为56的人参加篮球社团,掷出点数小于5的人参加足球社团.

1)求这4人中恰有1人参加篮球社团的概率;

2)用分别表示这4人中参加篮球社团和足球社团的人数,记随机变量X之差的绝对值,求随机变量X的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCDEF分别是ABPD的中点,且PA=AD

(Ⅰ)求证:AF∥平面PEC

(Ⅱ)求证:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个回归方程,变量增加1个单位时,平均增加5个单位

③线性回归方程必过

④设具有相关关系的两个变量的相关系数为,那么越接近于0之间的线性相关程度越高;

⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。

其中错误的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是等边三角形, 边上的动点(含端点),记,.

(1)求的最大值;

(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知函数,点分别是的图象与轴、轴的交点,分别是的图象上横坐标为的两点,轴,且三点共线.

1)求函数的解析式;

2)若,求

3)若关于的函数在区间上恰好有一个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案