精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲
设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.
(1)作出函数f(x)的图象;
(2)若a2+2c2+3b2=m,求ab+2bc的最大值.

【答案】
(1)解:当x≤﹣ 时,f(x)=(1﹣x)+2x+1=x+2;

当﹣ <x<1时,f(x)=(1﹣x)﹣2x﹣1=﹣3x:

当x≥1时,f(x)=(x﹣1)﹣2x﹣1=﹣x﹣2,

函数f(x)的图象,如图所示


(2)解:由题意,当x=﹣ 时,f(x)取得最大值m=1.5,∴a2+2c2+3b2=1.5,

∴ab+2bc≤ (a2+2c2+3b2)= ,即ab+2bc的最大值为


【解析】(1)分类讨论,作出函数f(x)的图象;(2)求出函数的值域,即可求m的值,利用基本不等式求ab+2bc的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x>0时,f(x)= x3+ax(a∈R),且曲线f(x)在x= 处的切线与直线y=﹣ x﹣1平行.
(Ⅰ)求a的值及函数f(x)的解析式;
(Ⅱ)若函数y=f(x)﹣m在区间[﹣3, ]上有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线 的右支上的一点P作一直线l与两渐近线交于A、B两点,其中P是AB的中点;
(1)求双曲线的渐近线方程;
(2)当P坐标为(x0 , 2)时,求直线l的方程;
(3)求证:|OA||OB|是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 若Sm1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若数列{bn}满足 =logabn(n∈N*),求数列{(an+6)bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数λ≥0,设各项均为正数的数列{an}的前n项和为Sn,满足:a1 = 1,

).

(1)若λ = 0,求数列{an}的通项公式;

(2)若对一切恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A、B、C所对的边分别为a、b、c,已知a≠b,c= ,且bsinB﹣asinA= acosA﹣ bcosB.
(Ⅰ)求C;
(Ⅱ)若△ABC的面积为 ,求a与b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线x2=1上有两点ABAB中点M(1,2),求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

查看答案和解析>>

同步练习册答案