¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãµ½³¤ÖáµÄÁ½¸ö¶ËµãµÄ¾àÀë·Ö±ðΪ2+
3
ºÍ2-
3
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Èô¹ýÍÖÔ²µÄÓÒ½¹µã£¬Çãб½ÇΪ
¦Ð
3
µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇóÏ߶ÎABµÄ³¤£»
£¨3£©Èçͼ£¬¹ýÔ­µãÏ໥´¹Ö±µÄÁ½ÌõÖ±ÏßÓëÍÖÔ²
x2
4
+
y2
2
=1
µÄËĸö½»µã¹¹³ÉËıßÐÎPRSQ£¬ÉèÖ±ÏßPSµÄÇãб½ÇΪ¦È(¦È¡Ê(0£¬
¦Ð
2
])
£¬ÊÔÎÊ£º¡÷PSQÄÜ·ñΪÕýÈý½ÇÐΣ¬ÈôÄÜÇó¦ÈµÄÖµ£¬Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²µÄÐÔÖÊ£¬¿ÉÖª½¹µãµ½³¤ÖáµÄÁ½¸ö¶ËµãµÄ¾àÀë·Ö±ðΪa+cºÍa-c£¬ÔÙ°ÑËù¸øÊýÖµ´úÈ룬¼´¿ÉµÃ³öa£¬bµÄÖµ£¬Çó³öÍÖÔ²µÄ·½³Ì£®
£¨2£©ÀûÓÃÏÒ³¤¹«Ê½¼ÆËã¼´¿É£¬×¢ÒâÉè¶ø²»Çó˼ÏëµÄÔËÓã®
£¨3£©ÏȼÙÉ裺¡÷PSQÄÜΪÕýÈý½ÇÐΣ¬ÉèÖ±ÏßPSµÄ·½³Ì£¬ÔòÖ±ÏßRQµÄ·½³ÌÒ²¿ÉÖª£¬·Ö±ðÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃÏÒ³¤¹«Ê½Çó³öPSÓëOQµÄ³¤¶È£¬ÔÙ¸ù¾ÝÕýÈý½ÇÐÎÖеĹØϵÅжϼ´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâµÃ
a+c=2+
3
a-c=2-
3
£¬½âµÃa=2£¬c=
3
£¬b=1

ËùÇóµÄ·½³ÌΪ
x2
4
+y2=1

£¨2£©Ö±Ïß·½³ÌΪy=
3
(x-
3
)
£¬
´úÈëÍÖÔ²·½³ÌµÃ13x2-24
3
x+32=0
£¬ËùÒÔ
x1+x2=
24
3
13
x1x2=
32
13
£¬
ÓÉÏÒ³¤¹«Ê½ÇóµÃAB=
16
13
£®
£¨3£©µ±PÔÚyÖáÉÏ£¬QÔÚxÖáÉÏʱ£¬¡÷PSQ²»ÊÇÕýÈý½ÇÐΣ® 
µ±P²»ÔÚyÖáÉÏʱ£¬ÉèÖ±ÏßPSµÄбÂÊΪk£¬P£¨x1£¬kx1£©£¬ÔòÖ±ÏßRQµÄбÂÊΪ-
1
k
£¬Q(x2£¬-
1
k
x2)

ÓÉ
y=kx
x2
4
+
y2
2
=1
µÃ
1
x12
=
1
4
+
k2
2
£¨1£©£¬Í¬Àí
1
x22
=
1
4
+
1
2k2
£¨2£©
ÓÉ¡÷PSQΪÕýÈý½ÇÐΣ¬µÃ
3
|OP|=|OQ|
£¬¼´3|OP|2=|OQ|2
ËùÒÔ3[x12+(kx1)2]=x22+(
x2
k
)2
£¬»¯¼òµÃ
3k2
x22
=
1
x12
£¬
3k2(
1
4
+
1
2k2
)=
1
4
+
k2
2
£¬¼´k2=-
5
4
£¼0
£®
ËùÒÔ¡÷OPQ²»ÊÇÕýÈý½ÇÐΣ®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²ÐÔÖʵÄÓ¦Óã¬ÏÒ³¤¹«Ê½µÄÓ¦Óã¬ÒÔ¼°Î¤´ï¶¨ÀíÔÚ½â¾öÖ±ÏßÓëԲ׶ÇúÏßλÖùØϵÅжÏÖеÄÓ¦ÓÃ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
1
2
£¬ÇÒ¾­¹ýµãP(1£¬
3
2
)
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèFÊÇÍÖÔ²CµÄ×ó½¹£¬ÅжÏÒÔPFΪֱ¾¶µÄÔ²ÓëÒÔÍÖÔ²³¤ÖáΪֱ¾¶µÄÔ²µÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2
3
£¬ÓÒ½¹µãFÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖغϣ¬OΪ×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA¡¢BÊÇÍÖÔ²CÉϵIJ»Í¬Á½µã£¬µãD£¨-4£¬0£©£¬ÇÒÂú×ã
DA
=¦Ë
DB
£¬Èô¦Ë¡Ê[
3
8
£¬
1
2
]£¬ÇóÖ±ÏßABµÄбÂʵÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©¾­¹ýµãA£¨1£¬
3
2
£©£¬ÇÒÀëÐÄÂÊe=
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãB£¨-1£¬0£©ÄÜ·ñ×÷³öÖ±Ïßl£¬Ê¹lÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·¿É½Çø¶þÄ££©ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ³¤Ö᳤ÊÇ4£¬ÀëÐÄÂÊΪ
1
2
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©Éè¹ýµãP£¨0£¬-2£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÇÒM£¬N²»ÓëÍÖÔ²µÄ¶¥µãÖغϣ¬ÈôÒÔMNΪֱ¾¶µÄÔ²¹ýÍÖÔ²CµÄÓÒ¶¥µãA£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ¶ÌÖ᳤Ϊ2£¬ÀëÐÄÂÊΪ
2
2
£¬Éè¹ýÓÒ½¹µãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬¹ýA£¬B×÷Ö±Ïßx=2µÄ´¹ÏßAP£¬BQ£¬´¹×ã·Ö±ðΪP£¬Q£®¼Ç¦Ë=
AP+BQ
PQ
£¬ÈôÖ±ÏßlµÄбÂÊk¡Ý
3
£¬Ôò¦ËµÄÈ¡Öµ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸