精英家教网 > 高中数学 > 题目详情

【题目】定义在[0,+∞)上的函数f(x)满足:①当x∈[1,2)时, ;②x∈[0,+∞)都有f(2x)=2f(x).设关于x的函数F(x)=f(x)﹣a的零点从小到大依次为x1 , x2 , x3 , …xn , …,若 ,则x1+x2+…+x2n=

【答案】6×(2n﹣1)
【解析】解:∵①当x∈[1,2)时, ;②x∈[0,+∞)都有f(2x)=2f(x). 当x∈[2,4)时, ∈[1,2),
f(x)=2f( x)=2( ﹣| |)=1﹣|x﹣3|,x∈[4,8)时, ∈[2,4),
f(x)=2f( x)=2(1﹣| x﹣3|)=2﹣|x﹣6|,
同理,则 ,F(x)=f(x)﹣a在区间(2,3)和(3,4)上各有1个零点,分别为x1 , x2 , 且满足x1+x2=2×3=6,
依此类推:x3+x4=2×6=12,x5+x6=2×12=24…,x2n1+x2n=2×3×2n1
∴当 时,x1+x2+…+x2n1+x2n=6×(1+2+22+…+2n1)=6× =6×(2n﹣1),
所以答案是:6×(2n﹣1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是函数的图象与轴的个相邻交点的横坐标,且当时,取得最大值.

(1)求数的表达式;

(2)将函数的图象上的每一点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,再将函数的图象向右平移个单位,得到函数的图象.

①求函数的解析式;

②求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,

(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;

〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为abc,已知2bcosC=acosC+ccosA.

(1)求角C的大小;

(2)若b=2,c=,求a及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)满足 则称函数f(x)是[a,b]上的“中值函数”.已知函数 是[0,m]上的“中值函数”,则实数m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),,以原点为极点,轴正半轴为极轴建立极坐标系,圆极坐标方程为.

(1)若直线与圆相切,求的值;

(2)已知直线与圆交于两点,记点相应的参数分别为,当时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合 ,则A∩RB=(
A.(1,+∞)
B.[0,1]
C.[0,1)
D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 满足| |= ,| |=1, =﹣1,且 的夹角为 ,则| |的最大值为(
A.
B.2
C.
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 (a>b>0)的离心率为 ,P(﹣2,1)是C1上一点.
(1)求椭圆C1的方程;
(2)设A,B,Q是P分别关于两坐标轴及坐标原点的对称点,平行于AB的直线l交C1于异于P、Q的两点C,D,点C关于原点的对称点为E.证明:直线PD、PE与y轴围成的三角形是等腰三角形.

查看答案和解析>>

同步练习册答案