精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且都有,满足的实数有且只有个,给出下述四个结论:

①满足题目条件的实数有且只有个;②满足题目条件的实数有且只有个;

上单调递增;④的取值范围是

其中所有正确结论的编号是( )

A.①④B.②③C.①②③D.①③④

【答案】D

【解析】

,由,得出,由题意得出为函数的最小值,为函数的最大值,作出函数的图象,结合图象得出,进而对各结论进行验证.

,当时,.

进行替换,作出函数的图象如下图所示:

由于函数上满足的实数有且只有个,

即函数上有且只有个零点,

由图象可知,解得,结论④正确;

由图象知,上只有一个最小值点,有一个或两个最大值点,结论①正确,结论②错误;

时,

,所以上递增,

则函数上单调递增,结论③正确.综上,正确的有①③④.故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面有五个命题

函数的最小正周期是

终边在y轴上的角的集合是

在同一坐标系中,函数的图象和函数的图象有一个公共点;

把函数

中,若,则是等腰三角形

其中真命题的序号是( )

A.(1)(2)(3) B.(2)(3)(4

C.(3)(4)(5) D.(1)(4)(5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为实数,函数f(x)=aln x+x2-4x.

(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;

(2)设g(x)=(a-2)x,若x0,使得f(x0)≤g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为椭圆的右焦点,为椭圆的上、下顶点,且的面积为

1)求椭圆的方程;

2)动直线与椭圆交于两点,证明:在第一象限内存在定点,使得当直线与直线的斜率均存在时,其斜率之和是与无关的常数,并求出所有满足条件的定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中a.

1)求的单调区间;

2)若存在极值点,且,其中,求证:

3)设,函数,求证:在区间上的最大值不小于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为

1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;

2)若直线lykx与曲线C1、曲线C2在第一象限交于PQ,且|OQ||PQ|,点M的直角坐标为(10),求△PMQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB为圆的一条直径,其端点AB在抛物线 上,且AB两点到抛物线C焦点的距离之和为11.

1)求抛物线C的方程及直径AB所在的直线方程;

2)过M点的直线l交抛物线CPQ两点,抛物线CPQ处的切线相交于N点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,分别为棱的中点.

1)在上确定点M,使平面,并说明理由。

2)若侧面侧面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生,新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:

愿意

不愿意

男生

60

20

女生

40

40

1)通过估算,试判断男、女哪种性别的学生愿意投入到新生接待工作的概率更大.

2)能否有99%的把握认为,愿意参加新生接待工作与性别有关?

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案