精英家教网 > 高中数学 > 题目详情
2.设a,b∈R,函数f(x)=ax2+b(x+1).若对任意实数b,函数g(x)=f(x)-x-2有两不同的零点,求实数a的取值范围(0,1).

分析 函数恒成立问题,首先函数恒有两个相异的零点,得到函数的判别式大于0,对于b的值,不管b取什么,都能够使得不等式成立,注意再次使用函数的判别式.

解答 解:由题意可得g(x)=ax2+(b-1)x+b-2.a≠0
则△=(b-1)2-4a(b-2)>0,即b2-(4a+2)b+1+8a+1>0对于b∈R恒成立
即△′=(4a+2)2-32a-4<0,
∴0<a<1,
故答案为:(0,1).

点评 本题考查函数恒成立问题,注意两次使用函数的判别式,这是函数的综合题目中常见的一种题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数y=${(\frac{1}{2})}^{\sqrt{{-x}^{2}-3x+4}}$.
(1)求函数的定义域,值域;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+3$\overrightarrow{{e}_{3}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{3}}$,$\overrightarrow{c}$=$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$+2$\overrightarrow{{e}_{3}}$,$\overrightarrow{d}$=4$\overrightarrow{{e}_{1}}$+6$\overrightarrow{{e}_{2}}$+8$\overrightarrow{{e}_{3}}$,$\overrightarrow{d}$=α$\overrightarrow{a}$+β$\overrightarrow{b}$+γ$\overrightarrow{c}$,则α,β,γ的值分别为(  )
A.$\frac{18}{5},\frac{9}{10},-\frac{1}{2}$B.$-\frac{18}{5},\frac{9}{10},-\frac{1}{2}$C.$\frac{18}{5},-\frac{9}{10},-\frac{1}{2}$D.$-\frac{18}{5},-\frac{9}{10},\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过点(-2,0)作圆x2+y2-6x=0的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设x,y,x∈(0,+∞)且3x=4y=6z,求证$\frac{1}{x}$+$\frac{1}{2y}$=$\frac{1}{z}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平行四边形ABCD中,∠BAD=120°,且|$\overrightarrow{AB}$|=1,|$\overrightarrow{AD}$|=2,O是平面ABCD内任一点,$\overrightarrow{OP}$=$\overrightarrow{OA}$+x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,当点P在以A为圆心,|$\overrightarrow{AC}$|为半径的圆上时,有(  )
A.x2+4y2-2xy=3B.x2+4y2+2xy=3C.4x2+y2-2xy=3D.4x2+y2+2xy=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\overrightarrow a$•$\overrightarrow b$+$\frac{1}{2}$,其中$\overrightarrow a$=($\sqrt{3}$sinx-cosx,-1),$\overrightarrow b$=(cosx,1).
(Ⅰ)求函数f(x)的最大值和及单调递增区间;
(Ⅱ)设△ABC的内角A、B、C的对边分别是a、b、c,且c=3,f(C)=0,若sin(A+C)=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若命题p:?x0∈[-3,3],x02+2x0+1≤0,则对命题p的否定是(  )
A.?x∈[-3,3],x2+2x+1>0B.?x∈(-∞,-3)∪(3,+∞),x2+2x+1>0
C.$?{x_0}∈({-∞,-3})∪({3,+∞}),{x_0}^2+2{x_0}+1≤0$D.$?{x_0}∈[{-3,3}],{x_0}^2+2{x_0}+1>0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式|x|$<\frac{2}{3}$的解集为.

查看答案和解析>>

同步练习册答案