精英家教网 > 高中数学 > 题目详情
14.讨论函数y=x${\;}^{\frac{2}{5}}$的定义域、值域、奇偶性、单调性,并画出函数图象.

分析 画出函数的图象,由图象得到函数的性质.

解答 解:函数y=x${\;}^{\frac{2}{5}}$的图象为:
由图象得,函数y=x${\;}^{\frac{2}{5}}$的定义域R,
值域为[0,+∞),
函数为偶函数,
在(-∞,0)为减函数,在(0,+∞)为增函数.

点评 本题考查了函数的图象的画法和识别,以及函数的定义域、值域、奇偶性、单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求值:${2}^{lo{g}_{\sqrt{2}}3}$+log${\;}_{(2+\sqrt{3})}$(7+4$\sqrt{3}$)-102+lg2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程log2(x+2)=3x的实数根个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分图象如图所示.其中L,M,N分别是函数f(x)的图象与坐标轴的交点.且LM=3OL,∠NM0=45°,线段MN的中点P的坐际为(2,一2).
(1)求函数f(x)的解析式;
(2)求函数f(x)的单凋递减区间以及当x∈[4,8]时,函数f(x)的取值范围.
(3)若过点M的直线与函数f(x)的图象交于B,C两点.求($\overrightarrow{LB}+\overrightarrow{LC}$)•($\overrightarrow{LC}-\overrightarrow{MC}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若方程Ax+By+C=0表示直线,则A,B应满足的条件是(  )
A.A≠0B.B≠0C.A•B≠0D.A2+B2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-(m-2)x+m-4的图象与x轴交于A,B两点,且|$\overrightarrow{AB}$|=2,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{|l{g}{(x-1)}|,x>1}\end{array}\right.$,若关于x的方程f2(x)+bf(x)=0有4个不同的实根,则实数b的取值范围为(  )
A.(2,+∞)B.(0,2]C.[-2,0)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{3x}{ln2x}$.
(1)求函数f(x)的单调减区间;
(2)已知不等式2x>(2x)a对任意x∈($\frac{1}{2}$,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=$\frac{1-x}{1+x}$,g(x)=x2+1,则g[f(x)]=$\frac{2+2{x}^{2}}{1+2x+{x}^{2}}$.

查看答案和解析>>

同步练习册答案