精英家教网 > 高中数学 > 题目详情

【题目】若直线与曲线满足下列两个条件:()直线在点处与曲线相切; ()曲线在点附近位于直线的两侧,则称直线在点处“切过”曲线.下列命题正确的是__________.(写出所有正确命题的编号)

直线在点处“切过”曲线

直线在点处“切过”曲线

直线在点处“切过”曲线

直线在点处“切过”曲线

【答案】①③

【解析】①∵

曲线在点处切线为

时,

时,

即曲线在点附近位于直线的两侧,正确;

时, 是减函数,

时, 是增函数,

上恒成立

曲线总在直线下方,不合要求,不正确;

③∵

曲线在点处切线为

是减函数,

时, ,即

曲线在切线的下方,

,即

曲线在切线的上方,正确;

时,

时, ,函数在区间上是减函数,

时, ,函数在区间上是增函数,

上是恒成立,

总在直线上方,不合要求,不正确.

综上,正确命题有①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线ba0),O为坐标原点,离心率,点在双曲线上.

1)求双曲线的方程;

2)若直线与双曲线交于PQ两点,且.|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为, 为坐标原点.

(Ⅰ)求椭圆的方程和离心率;

(Ⅱ)设点,动点在椭圆上,且轴的右侧,线段的垂直平分线轴相交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.

(1)的方程;

(2)是否存在直线,使得交于两点,与只有一个公共点,且?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自于同一年级的乘坐方式共有( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数fx),当x>0时,fx)=ax2+bx+8(0<a<4),点A(2,0)在函数fx)的图象上,且关于x的方程fx)+1=0有两个相等的实根.

(1)求函数fx)解析式;

(2)若x∈[tt+2](t>0)时,函数fx)有最小值1,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱的正(主)视图和侧(左)视图如图所示,设,的中心分别为, ,现将此三棱柱绕直线旋转,射线旋转所成角为弧度(可以取到任意一个实数),对应的俯视图的面积为,则函数的最大值为__________,最小正周期为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|﹣|x+2|.
(1)求不等式f(x)>0的解集;
(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线, 是三个不同的平面,给出下列四个命题:

①若,则 ②若,则

③若,则 ④若,则

其中正确命题的序号是( )

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

同步练习册答案