精英家教网 > 高中数学 > 题目详情

【题目】设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n1+a2n<0”的条件.(填“充要条件、充分不必要条件、必要不充分条件、即不充分也不必要条件”)

【答案】必要不充分
【解析】解:∵{an}是首项为正数的等比数列,公比为q,
∴当a1=1,q=﹣ 时,满足q<0,但此时a1+a2=1﹣ = >0,则a2n1+a2n<0不成立,即充分性不成立,
反之若a2n1+a2n<0,则a1q2n2+a1q2n1<0
∵a1>0,∴q2n2(1+q)<0,即1+q<0,
则q<﹣1,即q<0成立,即必要性成立,
则“q<0”是“对任意的正整数n,a2n1+a2n<0”的必要不充分条件,
故答案为:必要不充分
根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a∈R,f(x)= 为奇函数.
(1)求函数F(x)=f(x)+2x﹣ ﹣1的零点;
(2)设g(x)=2log2 ),若不等式f1(x)≤g(x)在区间[ ]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a2=6,a3+a6=27.
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项公式为 ,求数列{anbn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx-)+1(A>0, ω>0)与ω=cosωx的部分图象如图所示。

(1)求A,a,b的值及函数f(x)的递增区间;

(2)若函数y= g(x-m)(m>)与y= f(x)+ f(x-)的图象的对称轴完全相同,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若m<n,且f(m)=f(n),则n﹣m的取值范围是(
A.[3﹣2ln2,2)
B.[3﹣2ln2,2]
C.[e﹣1,2]
D.[e﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据是宜昌市个普通职工的年收入,设这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A. 年收入平均数可能不变,中位数可能不变,方差可能不变

B. 年收入平均数大大增大,中位数可能不变,方差变大

C. 年收入平均数大大增大,中位数可能不变,方差也不变

D. 年收入平均数大大增大,中位数一定变大,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数的图象过点,点与其相邻的最高点的距离为.

(1)求的单调递增区间;

(2)计算

(3)设函数,试讨论函数在区间上的零点个数.

查看答案和解析>>

同步练习册答案