科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。
(1)当A1P:PC1=1:3时,求cos(α+β)的大小。
(2)点P是线段A1C1(包括端点)上的一个动点,问:当点P在什么位置时,α+β有最小值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
如图,在底面是正方形的四棱锥中,面,交于点,是中点,为上一点.
⑴求证:;
⑵确定点在线段上的位置,使//平面,并说明理由.
⑶当二面角的大小为时,求与底面所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分10分) 如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定 AB="AD" =2,,,
(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图①,,分别是直角三角形边和的中点,,沿将三角形折成如图②所示的锐二面角,若为线段中点.求证:
(1)直线平面;
(2)平面平面.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com