精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数f(x)=x (m∈N*).

(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;

(2)若该函数还经过点(2, ),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.

【答案】(1)详见解析;(2)详见解析.

【解析】试题分析:(1)先判断幂函数的指数的奇偶,由m与m+1中必定有一个为偶数,可知m2+m为偶数,可得函数开偶次方,即函数定义域为[0,+∞),且在定义域内单调递增;(2)由过点(2, )和m∈N*求出m的值,进而得出函数的定义域和单调性,列出不等式解出a的范围即可.

试题解析:

(1)∵m2+m=m(m+1),m∈N*

m与m+1中必定有一个为偶数,

∴m2+m为偶数,

函数f(x)=x (mN*)的定义域为[0,+∞),并且该函数在其定义域上为增函数.

(2)∵函数f(x)经过点(2,)

2,即22

∴m2+m=2,即m2m20.

m=1或m=-2.

∵m∈N*∴m1.

f(x)在[0,+∞)上是增函数,

由f(2-a)>f(a-1)得

解得1≤a<.

故m的值为1,满足条件f(2-a)>f(a-1)的实数a的取值范围为.

点睛:本题考查幂函数的定义和性质,属于中档题. 第一问先判断幂函数的指数的奇偶,由m与m+1中必定有一个为偶数,可知m2+m为偶数,可得函数开偶次方,即函数定义域为[0,+∞),且在定义域内单调递增;第二问由过点(2, )和m∈N*求出m的值,进而得出函数的定义域和单调性, 写出f(2-a)>f(a-1)的等价条件求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)R上是单调递减的一次函数,且f(f(x))4x1.

(1)f(x)

(2)求函数yf(x)x2xx[1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1 (t为参数)曲线C2+y2=4.

(1)在同一平面直角坐标系中,将曲线C2上的点按坐标变换后得到曲线C′。求曲线C′的普通方程,并写出它的参数方程;

(2)若C1上的点P对应的参数为t=π/2,Q为C′上的动点,求PQ中点M到直线C3 (t为参数)的距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的极坐标方程为,直线的参数方程为.若直线与圆C相交于不同的两点P,Q.

(Ⅰ)写出圆C的直角坐标方程,并求圆心的坐标与半径;

(Ⅱ)若弦长|PQ|=4,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=x (m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足(a+1) <(3-2a) 的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照分成9组,制成了如图所示的频率直方图.

(1)求直方图中的值并估计居民月均用电量的中位数;

(2)从样本里月均用电量不低于700度的用户中随机抽取4户,用表示月均用电量不低于800度的用户数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(10分)设分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程

实根的个数(重根按一个计).

)求方程有实根的概率;

)求的分布列和数学期望;

)求在先后两次出现的点数中有5的条件下,方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个正数ab,可按规则扩充为一个新数c,在abc三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.

(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是_____________

(2)若p>q>0,经过6次操作后扩充所得的数为mn为正整数),

mn的值分别为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体中, 分别是的中点.

(1)证明:平面平面

(2)在上求一点,使得平面

查看答案和解析>>

同步练习册答案