精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的方程为,离心率,顶点到渐近线的距离为

(1)求双曲线的方程;

(2)是双曲线点,,两点在双曲线的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围.

【答案】12

【解析】

1)由顶点到渐近线距离、离心率和双曲线的关系可构造方程求得,进而得到双曲线方程;

2)假设三点坐标,利用可表示出点坐标,代入双曲线方程整理可得;结合渐近线斜率和倾斜角的关系、同角三角函数和二倍角公式可求得,利用三角形面积公式可将所求面积化为关于的函数,利用对号函数的性质即可求得所求取值范围.

1)由双曲线方程可知其渐近线方程为,顶点坐标

顶点到渐近线距离

得: 双曲线的方程为:

2)由(1)知:双曲线渐近线方程为

,其中

得:

,整理可得:

时,上单调递减,在上单调递增

面积的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数,满足,且在区间上是增函数,

①函数的一个周期为4;

②直线是函数图象的一条对称轴;

③函数上单调递增,在上单调递减;

④函数内有25个零点;

其中正确的命题序号是_____(注:把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某竞赛的题库系统有60%的自然科学类题目,40%的文化生活类题目(假设题库中的题目总数非常大),参赛者需从题库中抽取3个题目作答,有两种抽取方法:方法一是直接从题库中随机抽取3个题目;方法二是先在题库中按照题目类型用分层抽样的方法抽取10个题目作为样本,再从这10个题目中任意抽取3个题目.

(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.

(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为,答对文化生活类题目的概率为.设该参赛者答对的题目数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M到定点的距离和它到直线的距离的比是常数

1)求动点M的轨迹方程;

2)令(1)中方程表示曲线C,点S20),过点B10)的直线l与曲线C相交于PQ两点,求△PQS的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4— 4:坐标系与参数方程

设极坐标系与直角坐标系有相同的长度单位,原点为极点,轴正半轴为极轴,曲线的参数方程为是参数),直线的极坐标方程为

(Ⅰ)求曲线的普通方程和直线的参数方程;

(Ⅱ)设点,若直线与曲线相交于两点,且,求的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥PABCD中,平面PAD⊥平面ABCDPAPD,四边形ABCD为等腰梯形,BCADBCCDAD1EPA的中点.

1)求证:EB∥平面PCD

2)求平面PAC与平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:

甲公司

乙公司

职位

A

B

C

D

职位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

获得相应职位概率

0.4

0.3

0.2

0.1

获得相应职位概率

0.4

0.3

0.2

0.1

(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;

(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:

选择意愿

人员结构

40岁以上(含40岁)男性

40岁以上(含40岁)女性

40岁以下男性

40岁以下女性

选择甲公司

110

120

140

80

选择乙公司

150

90

200

110

若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k15.5513,测得出选择意愿与年龄有关系的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:),数列满足:),数列的前项和为

1)求数列的通项公式;

2)求证:数列是等比数列;

3)求证:数列是递增数列;若当且仅当时,取得最小值,求的取值范围.

查看答案和解析>>

同步练习册答案