精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,若直线的极坐标方程为,曲线的参数方程是为参数).

1)求直线的直角坐标方程和曲线的普通方程;

2)设点的直角坐标为,过的直线与直线平行,且与曲线交于两点,若,求的值.

【答案】1)直线的直角坐标方程为,曲线的普通方程为

2.

【解析】

1)利用两角和的余弦公式以及可将的极坐标方程转化为普通方程,在曲线的参数方程中消去参数可得出曲线的普通方程;

2)求出直线的倾斜角为,可得出直线的参数方程为为参数),并设点的参数分别为,将直线的参数方程与曲线普通方程联立,列出韦达定理,由,代入韦达定理可求出的值.

1)因为,所以

,得

即直线的直角坐标方程为

因为消去,得,所以曲线的普通方程为

2)因为点的直角坐标为,过的直线斜率为

可设直线的参数方程为为参数),

两点对应的参数分别为,将参数方程代入

,则.

所以,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB两地相距24km.甲车、乙车先后从A地出发匀速驶向B地.甲车从A地到B地需行驶25min;乙车从A地到B地需行驶20min.乙车比甲车晚出发2min

1)分别写出甲、乙两车所行路程关于甲车行驶时间的函数关系式;

2)甲、乙两车何时在途中相遇?相遇时距A地多远?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形为等腰梯形, , 沿对角线将旋转,使得点至点的位置,此时满足.

(1)判断的形状,并证明;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176, 196的5个人中有1个没有抽到,则这个编号是( )

A. 006B. 041C. 176D. 196

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每天下雨的概率都为.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:用表示下雨,从下列随机数表的第行第列的开始读取,直到读取了组数据,

18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10

55 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24

据此估计,这三天中恰有两天下雨的概率近似为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知椭圆的离心率为椭圆C长轴长为4

1求椭圆C的方程;

2已知直线与椭圆C交于A,B两点是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在求出k的值;若不存在请说明理由

查看答案和解析>>

同步练习册答案