精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,直线)与交于两点,的中点,为坐标原点.

1)求直线斜率的最大值;

2)若点在直线上,且为等边三角形,求点的坐标.

【答案】1;(2

【解析】

解法一:(1)设两点坐标,将直线方程与抛物线方程联立,根据一元二次方程根与系数关系、根的判别式、中点坐标公式求出的坐标,最后根据斜率公式,结合基本不等式进行求解即可;

2)利用弦长公式求出等边三角形的边长,最后利用等边三角形的性质,得到方程,求解方程即可求出点的坐标.

解法二:(1)设出两点的坐标,根据点在抛物线上,得到两个方程,再利用两点在直线上、中点坐标公式求出的坐标,最后根据斜率公式,结合基本不等式进行求解即可;

2)将直线方程与抛物线方程联立,根据一元二次方程根与系数关系、根的判别式、两点间距离公式求出等边三角形的边长,最后利用等边三角形的性质,得到方程,求解方程即可求出点的坐标.

解法一:(1)设

,消去得,

所以

因为的中点,

所以的坐标为,即

又因为,所以

(当且仅当,即等号成立.)

所以的斜率的最大值为

2)由(1)知,

因为为等边三角形,所以

所以

所以,所以,解得

,所以

,直线的方程为,即

所以时,

所以所求的点的坐标为

解法二:(1)设

因为的中点,且直线

所以因为,两个等式相减得:

所以所以

所以

又因为,所以

(当且仅当,即等号成立.)

所以的斜率的最大值为

2)由,消去

所以

由(1)知,的中点的坐标为

所以线段的垂直平分线方程为:

,得线段的垂直平分线与直线交点坐标为

所以

因为为等边三角形,所以

所以

所以,所以,解得

因为所以

,直线的方程为,即

所以时,

所以所求的点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年新年伊始,新型冠状病毒来势汹汹,疫情使得各地学生在寒假结束之后无法返校,教育部就此提出了线上教学和远程教学,停课不停学的要求也得到了家长们的赞同.各地学校开展各式各样的线上教学,某地学校为了加强学生爱国教育,拟开设国学课,为了了解学生喜欢国学是否与性别有关,该学校对100名学生进行了问卷调查,得到如下列联表:

喜欢国学

不喜欢国学

合计

男生

20

50

女生

10

合计

100

1)请将上述列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜欢国学与性别有关系?

2)针对问卷调查的100名学生,学校决定从喜欢国学的人中按分层抽样的方法随机抽取6人成立国学宣传组,并在这6人中任选2人作为宣传组的组长,求选出的两人均为女生的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为,且

(Ⅰ)求

(Ⅱ)若,如图,为线段上一点,且,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,圆经过椭圆C的左、右焦点

1)求椭圆C的标准方程;

2)若ABDE是椭圆C上不同四点(其中点D在第一象限),且,直线关于直线对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆的左顶点斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.

1)求椭圆的离心率;

2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,若的方向是沿方向绕着点按逆时针方向旋转角得到的,则称经过一次变换得到.已知向量经过一次变换后得到经过一次变换后得到,如此下去,经过一次变换后得到,设,则__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面,四边形是菱形, ,且 交于点 上任意一点.

(1)求证:

(2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左顶点为,右顶点为,已知椭圆的离心率为,且以线段为直径的圆被直线所截的弦长为

1)求椭圆的方程;

2)记椭圆的右焦点为,过点且斜率为的直线交椭圆于两点.若线段的垂直平分线与轴交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,的中点,.

1)求证:平面

2)若异面直线所成角为,求四棱锥的体积.

查看答案和解析>>

同步练习册答案