精英家教网 > 高中数学 > 题目详情
10.若xlog23=1,则3x+3-x的值为(  )
A.2B.6C.$\frac{5}{2}$D.$\frac{10}{3}$

分析 直接利用对数的运算法则化简求解即可.

解答 解:xlog23=1,可得:x=log32,
则3x+3-x=${3}^{lo{g}_{3}2}$+${3}^{-lo{g}_{3}2}$=2$+\frac{1}{2}$=$\frac{5}{2}$.
故选:C.

点评 本题考查对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x-a},x≤a}\\{-{x}^{2}+2ax-{a}^{2}+2a,x>a}\end{array}\right.$(a>0且a≠1)在其定义域内单调,则实数a的取值范围为(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{2}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex+ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)记函数f(x)的导数为f′(x),证明:对任意a∈R,给定x1,x2且x1<x2存在x0∈(x1,x2),使得f′(x0)=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,x).
(1)当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,求x的值;
(2)若x=$\frac{1}{2}$,求|$\overrightarrow{a}$+2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=x3+(1-a)x2-a(a+2)x在区间(-1,1)上不单调,则实数a的取值范围是(  )
A.(-5,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1)B.(-5,1)
C.(-5,-1)D.(-5,-1)∪(-1,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点分别为F1、F2,离心率e=$\frac{5}{3}$,点P是双曲线上的一点,且|PF1|=15,则|PF2|等于(  )
A.27B.3C.27或3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设点B为点A(3,-4,5)关于xOz面的对称点,则|AB|=(  )
A.6B.8C.10D.5$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源:2016-2017学年内蒙古高二文上月考一数学试卷(解析版) 题型:选择题

已知双曲线-=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )

A. B.4 C.3 D.5

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(文)试卷(解析版) 题型:选择题

如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案