精英家教网 > 高中数学 > 题目详情

(本题满分14分)
如图,在底面是正方形的四棱锥中,于点中点,上一点.
⑴求证:
⑵确定点在线段上的位置,使//平面,并说明理由.
⑶当二面角的大小为时,求与底面所成角的正切值.

⑴见解析;⑵当中点,即时,平面
(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知:如图,在四棱锥中,四边形为正方形,,且中点.
(Ⅰ)证明://平面
(Ⅱ)证明:平面平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.

(Ⅰ)求证:DM∥平面APC;
(II)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(1)证明:无论取何值,总有
(2)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(3)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为空间四边形的边上的点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如右图,在四棱锥中,底面为平行四边形,中点,平面中点.
(1)证明://平面
(2)证明:平面
(3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分) 如图,直三棱柱中, ,.
(Ⅰ)证明:
(Ⅱ)求二面角的正切值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)如图,四棱锥的底面为矩形,且


(Ⅰ)平面与平面是否垂直?并说明理由;
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共l5分) 如图,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1

(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;      
(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案