精英家教网 > 高中数学 > 题目详情
16.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b,则b为(  )
A.-1B.0C.1D.无法确定

分析 根据奇函数的性质,可得f(0)=0,代入构造关于b的方程,解得答案.

解答 解:∵f(x)为定义在R上的奇函数,
∴f(0)=0,
∵当x≥0时,f(x)=2x+2x+b,
∴f(0)=1+b=0,
解得:b=-1.
故选:A

点评 本题考查的知识点是函数奇偶性的性质,方程思想,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{{a}^{x}-a,x>1}\\{{x}^{2}+\frac{1}{2}ax-2,x≤1}\end{array}\right.$是(-$\frac{3}{8}$,+∞)上的增函数,那么a的取值范围是(  )
A.($\frac{3}{2}$,2)B.(1,2]C.[$\frac{3}{2}$,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x2-2x-3|-a满足下列条件,求a的取值范围.
(1)函数有两个零点;
(2)函数有四个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x4-4x3+10x2-27,则方程f(x)=0在[2,10]上的根(  )
A.有3个B.有2个C.有且只有1个D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$(1,\frac{{\sqrt{2}}}{2})$.
(1)求椭圆C的方程;
(2)动直线l与椭圆C有且只有一个公共点,问:在x轴上是否存在两个定点,它们到直线l的距离之积等于1?如果存在,求出这两个定点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2-4x+3<0},B={|x|$\frac{x-4}{2-x}$≥0},则A∩B=(  )
A.[2,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.等比数列{an}满足:a1+a6=11,a3a4=$\frac{32}{9}$,则a1=$\frac{32}{3}或\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(cosα,sinα)(α∈R)
(I)若α=-$\frac{π}{6}$,试用基底$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{c}$=(2$\sqrt{3}$,0);
(II)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求α值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{log_3}x,0<x≤9\\ f(x-4),x>9\end{array}$则$f(13)+2f(\frac{1}{3})$的值为(  )
A.1B.0C.-2D.2

查看答案和解析>>

同步练习册答案