精英家教网 > 高中数学 > 题目详情
(2008•宁波模拟)在等比数列{an}中,若a1+a2+a3=
7
4
a2=
1
2
,则
1
a1
+
1
a2
+
1
a3
=
13
4
13
4
分析:利用等比数列的性质得到a1a2a3=a23=
1
8
a1a3=a22=
1
4
,将
1
a1
+
1
a2
+
1
a3
通过通分变形为
a2a3+a1a3+a1a2
a1a2a3
,将得到的值代入即得到所求.
解答:解:在等比数列{an}中,因为a1+a2+a3=
7
4
a2=
1
2

所以a1a2a3=a23=
1
8
a1a3=a22=
1
4

所以
1
a1
+
1
a2
+
1
a3

=
a2a3+a1a3+a1a2
a1a2a3

=
1
4
+a2(a1 +a3)
1
8

=2+(
7
4
-a2)

=
13
4

故答案为:
13
4
点评:本题考查等比数列的性质:若m+n=p+q,则有am•an=ap•aq,该性质在解决一些代数式的求值问题时常有,要牢记.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•宁波模拟)有10件产品,其中3件是次品,从中任取两件,若ξ表示取到次品的个数,则Eξ等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宁波模拟)在等比数列{an}中,a2+a5=18,a3•a4=32,且an+1<an(n∈N*)
(1)求数列{an}的通项公式;
(2)若Tn=lga1+lga2+…+lgan,求Tn的最大值及此时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宁波模拟)已知函数f(x)=Asin(ωx+?),(A>0,ω>0,0<?<
π
2
)
图象关于点B(-
π
4
,0)
对称,点B到函数y=f(x)图象的对称轴的最短距离为
π
2
,且f(
π
2
)=1

(1)求A,ω,?的值;
(2)若0<θ<π,且f(θ)=
1
3
,求cos2θ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宁波模拟)在区间(-∞,1)上递增的函数是(  )

查看答案和解析>>

同步练习册答案