精英家教网 > 高中数学 > 题目详情
1.已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=DC=1,以D为圆心,DC为半径,作弧和AD交于点E,点P为劣弧CE上的动点,如图所示.
(1)求|$\overrightarrow{DA}+\overrightarrow{DC}$|;
(2)求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.

分析 (1)建立坐标系,代入各点坐标计算;
(2)设P(cosα,sinα),用α表示出$\overrightarrow{PA}•\overrightarrow{PB}$,转化成三角函数求最值.

解答 解:(1)以DA所在直线为x轴,D为原点建立平面直角坐标系,
则 A(2,0),B(1,1),C(0,1),D(0,0),
$\overrightarrow{DA}$=(2,0),$\overrightarrow{DC}$=(0,1),∴$\overrightarrow{DA}+\overrightarrow{DC}$=(2,1).
∴|$\overrightarrow{DA}+DC$|=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$.
(2)设点$P(cosα,sinα),0≤α≤\frac{π}{2}$,
∴$\overrightarrow{PA}=(2-cosα,-sinα)$,$\overrightarrow{PB}=(1-cosα,1-sinα)$
∴$\overrightarrow{PA}•\overrightarrow{PB}=(2-cosα)(1-cosα)+(-sinα)(1-sinα)$=-(sinα+3cosα)+3=$-\sqrt{10}sin(α+φ)+3$,(sinφ=$\frac{\sqrt{10}}{10}$,cosφ=$\frac{3\sqrt{10}}{10}$)
∵$α∈[0,\frac{π}{2}],tanφ=3$
∴当sin(α+φ)=1时,$\overrightarrow{PA}•\overrightarrow{PB}$的取得最小值是$3-\sqrt{10}$.

点评 本题考查了平面向量在几何中的应用,建立坐标系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(I)证明:BD⊥平面PAC;
(Ⅱ)若PA=1,AD=2,求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\vec a=(x-5,3),\vec b=(2,x),且\vec a⊥\vec b$,则x=(  )
A.2或3B.-1或6C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(Ⅰ)在答题卡上作出这些数据的频率分布直方图:
(Ⅱ)估计这种产品质量指标值的众数、中位数及平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数y=sin(x+$\frac{π}{6}$)的图象上各点的横坐标压缩为原来的$\frac{1}{2}$倍(纵坐标不变),所得函数在下面哪个区间单调递增(  )
A.(-$\frac{π}{3}$,$\frac{π}{6}$)?B.(-$\frac{π}{2}$,$\frac{π}{2}$)?C.(-$\frac{π}{3}$,$\frac{π}{3}$)??D.(-$\frac{π}{6}$,$\frac{2π}{3}$)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的半径为1,圆心C在直线3x-y=0上.
(Ⅰ)若圆C被直线x-y+3=0截得的弦长为$\sqrt{2}$,求圆C的标准方程;
(Ⅱ)设点A(0,3),若圆C上总存在两个点到点A的距离为2,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(文)不等式ax2+bx+2>0的解集为($-\frac{1}{2},\frac{1}{3}$),则ab的值为(  )
A.24B.-24C.12D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列各图是正方体和正三棱柱(两底面为正三角形的直棱柱),G、N、M、H分别是顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法中正确的是(  )
A.“f(0)=0”是“函数f(x)是奇函数”的充要条件
B.若p:?x0∈R,x02-x0-1>0,则¬p:?x∈R,x2-x-1<0
C.若p∧q为假命题,则p,q均为假命题
D.“若$α=\frac{π}{6}$,则$sinα=\frac{1}{2}$”的逆否命题为真命题

查看答案和解析>>

同步练习册答案