精英家教网 > 高中数学 > 题目详情

【题目】A. 选修4-1:几何证明选讲

如图,已知为圆的一条弦,点为弧的中点,过点任作两条弦分别交于点.

求证:.

【答案】详见解析.

【解析】试题分析:连结PAPBCDBC,因为∠PAB =∠PCB

又点P为弧AB的中点,所以∠PAB =∠PBA,所以∠PCB =∠PBA. 又∠DCB =∠DPB

所以∠PFE =∠PBA+DPB =∠PCB+DCB =∠PCD,所以EFDC四点共圆.

试题解析:

连结PAPBCDBC

因为∠PAB =∠PCB

又点P为弧AB的中点,所以∠PAB =∠PBA

所以∠PCB =∠PBA. 又∠DCB =∠DPB

所以∠PFE =∠PBA+DPB =∠PCB+DCB =∠PCD

所以EFDC四点共圆.

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数=ex(exa)﹣a2x

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf(x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求 的取值范围;
(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1)”生成一个函数h(x),使得h(x)满足:
①是偶函数,②有最小值1,求h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生产甲乙两种精密电子产品,用以下两种方案分别生产出甲乙产品共种,现对这两种方案生产的产品分别随机调查了各次,得到如下统计表:

①生产件甲产品和件乙产品

正次品

甲正品

甲正品

乙正品

甲正品

甲正品

乙次品

甲正品

甲次品

乙正品

甲正品

甲次品

乙次品

甲次品

甲次品

乙正品

甲次品

甲次品

乙次品

频 数

②生产件甲产品和件乙产品

正次品

乙正品

乙正品

甲正品

乙正品

乙正品

甲次品

乙正品

乙次品

甲正品

乙正品

乙次品

甲次品

乙次品

乙次品

甲正品

乙次品

乙次品

甲次品

频 数

已知生产电子产品甲件,若为正品可盈利元,若为次品则亏损元;生产电子产品乙件,若为正品可盈利元,若为次品则亏损元.

(I)按方案①生产件甲产品和件乙产品,求这件产品平均利润的估计值;

(II)从方案①②中选其一,生产甲乙产品共件,欲使件产品所得总利润大于元的机会多,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.

(1)若PD=1,求异面直线PB和DE所成角的余弦值.
(2)若二面角P﹣BF﹣C的余弦值为 ,求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x+2y+m=0与y轴交于A,B两点,且∠ACB=90°(C为圆心),过点P(0,2)且斜率为k的直线与圆C相交于M,N两点.
(1)求实数m的值;
(2)若|MN|≥4,求k的取值范围;
(3)若向量 与向量 共线(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.

(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且f(﹣3)=0,当x>0时,有f(x)﹣xf′(x)>0成立,则不等式f(x)>0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(0,3)
D.(﹣3,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,点D是BC的中点.

(1)求证:A1B∥平面ADC1
(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.

查看答案和解析>>

同步练习册答案