【题目】已知椭圆C:mx2+3my2=1(m>0)的长轴长为 ,O为坐标原点.
(1)求椭圆C的方程和离心率.
(2)设点A(3,0),动点B在y轴上,动点P在椭圆C上,且点P在y轴的右侧.若BA=BP,求四边形OPAB面积的最小值.
【答案】
(1)
解:由题意知椭圆C: ,
所以 , ,
故 ,解得 ,
所以椭圆C的方程为 .
因为 ,所以离心率
(2)
解:设线段AP的中点为D.
因为BA=BP,所以BD⊥AP.
由题意知直线BD的斜率存在,
设点P的坐标为(x0,y0)(y0≠0),
则点D的坐标为 ,直线AP的斜率 ,
所以直线BD的斜率 ,
故直线BD的方程为 .
令x=0,得 ,故 .
由 ,得 ,化简得 .
因此,S四边形OPAB=S△OAP+S△OAB=
= = = .
当且仅当 时,即 时等号成立.
故四边形OPAB面积的最小值为
【解析】(1)将椭圆方程化为标准方程,由题意可得a,可得b,即可得到椭圆方程,再由离心率公式计算即可得到所求值;(2)设AP中点为D,由|BA|=||BP|,所以BD⊥AP,求得AP的斜率,进而得到BD的斜率和中点,可得直线BD的方程,即有B的坐标,求得四边形OPAB的面积为S=S△OAP+S△OMB , 化简整理,运用基本不等式即可得到最小值.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】选修4-5:不等式选讲
已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:的离心率为,其右焦点到椭圆C外一点的距离为,不过原点O的直线l与椭圆C相交于A,B两点,且线段AB的长度为2.
1求椭圆C的方程;
2求面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中是错误命题的个数有( )
(1)若命题p为假命题,命题为假命题,则命题“”为假命题;
(2)命题“若,则或”的否命题为“若,则或”;
(3)对立事件一定是互斥事件;
(4)为两个事件,则P(A∪B)=P(A)+P(B);
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 通项公式为 .
(Ⅰ)计算f(1),f(2),f(3)的值;
(Ⅱ)比较f(n)与1的大小,并用数学归纳法证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经X表示。
(1)如果X=8,求乙组同学植树棵数的平均数和方差
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心坐标且与线y=3x+4相切,
(1)求圆C的方程;
(2)设直线与圆C交于M,N两点,那么以MN为直径的圆能否经过原点,若能,请求出直线MN的方程;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com