精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),F(c,0)是它的右焦点,经过坐标原点O的直线l与椭圆相交于A,B两点,且
FA
FB
=0,|
OA
-
OB
|=2|
OA
-
OF
|
,则椭圆的离心率为(  )
A、
2
B、
3
C、
2
-1
D、
3
-1
分析:先由题意知:O是AB的中点,三角形ABF是直角三角形,再结合向量条件,得出△FAO为等边三角形,从而△AFF1为直角三角形(F1为椭圆的左焦点),最后在Rt△AFF1中,利用边之间的关系结合椭圆的定义得到a,c的关系,从而求得椭圆的离心率.
解答:解:由题意知:O是AB的中点,三角形ABF是直角三角形,
|
OA
-
OB
|=2|
OA
-
OF
|
|
OA
|=|
AF
|

△FAO为等边三角形,
故△AFF1为直角三角形(F1为椭圆的左焦点)
在Rt△AFF1中,AF=c,FF1=2c,∴AF1=
3
c
∵AF+AF1=2a,∴c+
3
c=2a,
则椭圆的离心率为
c
a
=
2
1+
3
=
3
-1

故选D.
点评:本题主要考查椭圆离心率的求法.在椭圆中一定要熟练掌握a,b,c之间的关系、离心率、准线方程等基本性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案