精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中中,曲线的参数方程为为参数, ). 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;

(2)若曲线上所有的点均在直线的右下方,求的取值范围.

【答案】(1)(2)

【解析】试题分析】(1)可先将直线的极坐标化为直角坐标方程,再借助曲线参数方程得到形式运用点到直线的距离公式建立目标函数,通过求函数的最值使得问题获解;(2)先将问题进行等价转化为不等式恒成立然后再借助不等式恒成立建立不等式进行求解:

解:(1)由,得,化成直角坐标方程,得,即直线的方程为,依题意,设,则到直线的距离,当,即时, ,故点到直线的距离的最大值为.

(2)因为曲线上的所有点均在直线的右下方, 恒成立,即

(其中)恒成立, ,又,解得,故取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】①在同一坐标系中,的图象关于轴对称

②函数是奇函数

③函数的图象关于成中心对称

④函数的最大值为

以上四个判断正确有_____________.(写上序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数在区间的最小值;

2)若讨论函数的单调性;

3)若对于任意的

的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大豆,古称菽,原产中国,在中国已有五千年栽培历史。皖北多平原地带,黄河故道土地肥沃,适宜种植大豆。2018年春,为响应中国大豆参与世界贸易的竞争,某市农科院积极研究,加大优良品种的培育工作。其中一项基础工作就是研究昼夜温差大小与大豆发芽率之间的关系。为此科研人员分别记录了5天中每天100粒大豆的发芽数得如下数据表格:

科研人员确定研究方案是:从5组数据中选3组数据求线性回归方程,再用求得的回归方程对剩下的2组数据进行检验.

(1)求剩下的2组数据恰是不相邻的2天数据的概率;

(2)若选取的是4月5日、6日、7日三天数据据此求关于的线性回归方程

(3)若由线性回归方程得到的估计数据与实际数据的误差绝对值均不超过1粒,则认为得到的线性回归方程是可靠的,请检验(Ⅱ)中回归方程是否可靠?

注: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向观光、休闲、会展三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:

1

2

3

4

5

6

7

8

9

10

旅游人数(万人)

300

283

321

345

372

435

486

527

622

800

该景点为了预测2021年的旅游人数,建立了的两个回归模型:

模型①:由最小二乘法公式求得的线性回归方程

模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.

1)根据表中数据,求模型②的回归方程.(精确到个位,精确到001).

2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).

回归方程

30407

14607

参考公式、参考数据及说明:

①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:

55

449

605

83

4195

900

表中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)设函数 ,且有两个不同的零点

①求实数的取值范围; ②求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角ABC所对的边长分别为abc,且满足a2c2b2ac.

(1)求角B的大小;

(2)若2bcos A(ccosAacosC),BC边上的中线AM的长为,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列方程组的解集:

1;(2;(3;(4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足:Sn1,且an>0nN*.

1)求a1a2a3,并猜想{an}的通项公式;

2)证明(1)中的猜想.

查看答案和解析>>

同步练习册答案