精英家教网 > 高中数学 > 题目详情
6.已知A(-1,1,2)、B(1,0,-1),设D在直线AB上,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,设C(λ,$\frac{1}{3}$+λ,1+λ),若CD⊥AB,则λ的值为(  )
A.$\frac{11}{6}$B.-$\frac{11}{6}$C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 设出点D(x,y,z),利用向量的坐标表示与共线定理求出点D的坐标,再利用向量垂直数量积为0,列出方程求出λ的值.

解答 解:设D(x,y,z),则
$\overrightarrow{AD}$=(x+1,y-1,z-2),
$\overrightarrow{AB}$=(2,-1,-3),
$\overrightarrow{DB}$=(1-x,-y,-1-z),
∵$\overrightarrow{AD}$=2$\overrightarrow{DB}$,
∴(x+1,y-1,z-2)=2(1-x,-y,-1-z);
即$\left\{\begin{array}{l}{x+1=2(1-x)}\\{y-1=-2y}\\{z-2=-2-2z}\end{array}\right.$,
解得x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=0;
∴D($\frac{1}{3}$,$\frac{1}{3}$,0),
$\overrightarrow{CD}$=($\frac{1}{3}$-λ,-λ,-1-λ),
∵$\overrightarrow{CD}$⊥$\overrightarrow{AB}$,
∴$\overrightarrow{CD}$•$\overrightarrow{AB}$=2($\frac{1}{3}$-λ)+λ-3(-1-λ)=0,
解得λ=-$\frac{11}{6}$.
故选:B.

点评 本题考查了空间向量的共线定理与数量积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数$y=\frac{lnx}{x}$的单调增区间是(  )
A.(0,e)B.(-∞,e)C.(e-1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线y=x+m与曲线$y=\sqrt{1-{x^2}}$有两个不同的交点,则实数m的取值范围为(  )
A.$(-\sqrt{2},\sqrt{2})$B.$(1,\sqrt{2})$C.$(-1,\sqrt{2}]$D.$[1,\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了研究学生性别与是否喜欢数学课之间的关系,得到列联表如下:
喜欢数学不喜欢数学总计
4080120
40140180
总计80220300
并经计算:K2≈4.545
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
请判断有(  )把握认为性别与喜欢数学课有关.
A.5%B.99.9%C.99%D.95%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a$=(-1,2),$\overrightarrow b$=(1,-2y),若$\overrightarrow a$∥$\overrightarrow b$,则 y 的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式组$\left\{\begin{array}{l}x-y≥0\\ x+y+2≥0\\ 2x-y-2≤0\end{array}\right.$所确定的平面区域记为D,则(x-2)2+(y+3)2的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={-1,0,1,2,3,4},且A∪B={1,2,3,4},A={2,3},则B∩(∁A)=(  )
A.{1,4}B.{1}C.{4}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知:函数f(x)=2$\sqrt{3}{sin^2}$x+sin2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递增区间;
(Ⅲ)把函数y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象,求$g(\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设$a=\sqrt{5}-\sqrt{6},b=\sqrt{6}-\sqrt{7}$,则a,b的大小关系为a<b.

查看答案和解析>>

同步练习册答案