Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨1£©£¨²»µÈʽѡ½²£©ÒÑÖªº¯Êýf£¨x£©=log2£¨|x-1|+|x-5|-a£©£¬µ±º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪRʱ£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª   
£¨2£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ABÊÇ°ëÔ²OµÄÖ±¾¶£¬µãCÔÚ°ëÔ²ÉÏ£¬CD¡ÍAB£¬´¹×ãΪD£¬ÇÒAD=5DB£¬Éè¡ÏCOD=¦È£¬Ôòtan¦ÈµÄֵΪ    £®

£¨3£©£¨×ø±êϵÓë²ÎÊý·½³Ì£©Ô²O1ºÍÔ²O2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4cos¦È£¬¦Ñ=-4sin¦È£¬Ôò¾­¹ýÁ½Ô²Ô²ÐĵÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ    £®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©Ô­ÎÊÌâ?a£¼£¨|x-1|+|x-5|£©min£¬Í¨¹ý·ÖÀàÌÖÂÛÇó³öÆä×îСֵ¼´¿É£»
£¨2£©ÀûÓÃÔ²µÄÐÔÖÊ¡¢ÉäÓ°¶¨Àí¼°ÕýÇк¯ÊýµÄ¶¨Òå¼´¿ÉµÃ³ö£»
£¨3£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½¡¢Ô²µÄ±ê×¼·½³Ì¼°µãбʽ¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨1£©¡ßº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬¡à|x-1|+|x-5|-a£¾0¶ÔÓÚx¡ÊRºã³ÉÁ¢£¬
¶ø|x-1|+|x-5|-a£¾0¶ÔÓÚx¡ÊRºã³ÉÁ¢?a£¼£¨|x-1|+|x-5|£©min£®
Áîg£¨x£©=|x-1|+|x-5|=£¬¿ÉÖªg£¨x£©min=4£¬¡àa£¼4£®
£¨2£©Á¬½ÓAC£¬BC£¬¡ßABÊÇÔ²OµÄÖ±¾¶£¬¡àAC¡ÍBC£¬ÓÖ¡ßCD¡ÍAB£¬¡àCD2=AD×DB£¬
¡ßAD=5DB£¬¡àCD2=5DB2£¬¡à£®
¡ßr==3DB£¬¡àOD=r-DB=2DB£®
ÔÚRt¡÷OCDÖУ¬==£®
£¨3£©Ô²O1µÄ¼«×ø±ê·½³Ì¦Ñ=4cos¦È¿ÉÒÔ»¯Îª¦Ñ2=4¦Ñcos¦È£¬¡àx2+y2=4x£¬¡à£¨x-2£©2+y2=4£¬¡àÔ²ÐÄO1£¨2£¬0£©£»
Ô²O2µÄ¼«×ø±ê·½³Ì¦Ñ=-4sin¦È¿É»¯Îª¦Ñ2=4¦Ñsin¦È£¬¡àx2+y2=4y£¬Åä·½µÃx2+£¨y-2£©2=4£¬¡àÔ²ÐÄO2£¨0£¬2£©£®
¡à¾­¹ýÁ½Ô²Ô²ÐĵÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ £¬¼´y=x+2£®
¹Ê´ð°¸·Ö±ðΪ£¨-¡Þ£¬4£©£¬£¬y=x+2£®
µãÆÀ£º°ÑÎÊÌâÕýÈ·µÈ¼Ûת»¯£¬ÊìÁ·ÕÆÎÕ·ÖÀàÌÖÂ۵ķ½·¨¡¢Ô²µÄÐÔÖÊ¡¢ÉäÓ°¶¨Àí¼°ÕýÇк¯ÊýµÄ¶¨Òå¡¢¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½¡¢Ô²µÄ±ê×¼·½³Ì¼°µãбʽÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÑ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨1£©ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=1+2t
y=at2
£¨tΪ²ÎÊý£¬a¡ÊR£©£¬µãM£¨5£¬4£©ÔÚÇúÏßC ÉÏ£¬ÔòÇúÏßCµÄÆÕͨ·½³ÌΪ
 
£®
£¨2£©ÒÑÖª²»µÈʽx+|x-2c|£¾1µÄ½â¼¯ÎªR£¬ÔòÕýʵÊýcµÄÈ¡Öµ·¶Î§ÊÇ
 
£®
£¨3£©Èçͼ£¬PCÇÐÔ²OÓÚµãC£¬¸îÏßPAB¾­¹ýÔ²ÐÄA£¬PC=4£¬PB=8£¬ÔòS¡÷OBC
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÑ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©½«²ÎÊý·½³Ì
x=e2+e-2
y=2(e2-e-2)
£¨eΪ²ÎÊý£©»¯ÎªÆÕͨ·½³ÌÊÇ
 
£®
B£®£¨Ñ¡ÐÞ4-5 ²»µÈʽѡ½²£©²»µÈʽ|x-1|+|2x+3|£¾5µÄ½â¼¯ÊÇ
 
£®
C£®£¨Ñ¡ÐÞ4-1 ¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬ADÊǸßÏߣ¬CEÊÇÖÐÏߣ¬|DC|=|BE|£¬DG¡ÍCEÓÚG£¬ÇÒ|EC|=8£¬Ôò|EG|=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨1£©£¨²»µÈʽѡ½²£©ÒÑÖªº¯Êýf£¨x£©=log2£¨|x-1|+|x-5|-a£©£¬µ±º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪRʱ£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª
£¨-¡Þ£¬4£©
£¨-¡Þ£¬4£©

£¨2£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ABÊÇ°ëÔ²OµÄÖ±¾¶£¬µãCÔÚ°ëÔ²ÉÏ£¬CD¡ÍAB£¬´¹×ãΪD£¬ÇÒAD=5DB£¬Éè¡ÏCOD=¦È£¬Ôòtan¦ÈµÄֵΪ
5
2
5
2
£®

£¨3£©£¨×ø±êϵÓë²ÎÊý·½³Ì£©Ô²O1ºÍÔ²O2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4cos¦È£¬¦Ñ=-4sin¦È£¬Ôò¾­¹ýÁ½Ô²Ô²ÐĵÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ
y=x+2
y=x+2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÈôM£¬N·Ö±ðÊÇÇúÏߦÑ=2cos¦ÈºÍ¦Ñsin(¦È-
¦Ð
4
)=
2
2
ÉϵĶ¯µã£¬ÔòM£¬NÁ½µã¼äµÄ¾àÀëµÄ×îСֵÊÇ
2
-1
2
-1
£®
B£®£¨Ñ¡ÐÞ4-5 ²»µÈʽѡ½²£©Èô²»µÈʽ|x+
1
x
|£¾|a-2|+1
¶ÔÓÚÒ»ÇзÇÁãʵÊýx¾ù³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª
1£¼a£¼3
1£¼a£¼3
£®
C£®£¨Ñ¡ÐÞ4-1 ¼¸ºÎÖ¤Ã÷Ñ¡½²£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬Ô²OµÄ¸îÏßPBA¹ýÔ²ÐÄO£¬ÏÒCD½»ABÓÚµãE£¬ÇÒ¡÷COE¡«¡÷PDE£¬PB=OA=2£¬ÔòPEµÄ³¤µÈÓÚ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•Î¼ÄÏÈýÄ££©Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A¡¢£¨²»µÈʽѡ½²£©Èô¹ØÓÚxµÄ·½³Ìx2+4x+|a-1|=0ÓÐʵ¸ù£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª
[-3£¬5]
[-3£¬5]

B¡¢£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ADÊÇ¡ÑOµÄÇÐÏߣ¬ACÊÇ¡ÑOµÄÏÒ£¬¹ýC×÷ADµÄ´¹Ïߣ¬´¹×ãΪB£¬CBÓë¡ÑOÏཻÓÚµãE£¬AEƽ·Ö¡ÏCAB£¬ÇÒAE=2£¬ÔòAC=
2
3
2
3
 
C¡¢£¨×ø±êϵÓë²ÎÊý·½³Ì£©ÒÑÖªÖ±Ïß
x=1-2t
y=
3
+t.
£¨tΪ²ÎÊý£©ÓëÔ²¦Ñ=4cos(¦È-
¦Ð
3
)
ÏཻÓÚA¡¢BÁ½µã£¬Ôò|AB|=
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸