精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|-1<x≤2},集合B={x|-2≤x<3},则∁BA=(  )
A.[-2,-1]∪(2,3)B.[-2,-1)∪(2,3]C.(-2,-1]∪[2,3]D.(-2,-1)∪(2,3)

分析 由全集B,找出A的补集即可.

解答 解:∵A=(-1,2],B=[-2,3),
∴∁BA=[-2,-1]∪(2,3),
故选:A.

点评 此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求证:AB1⊥CC1
(2)若$A{B_1}=\sqrt{6}$,求二面角C-AB1-A1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AB切⊙O于点B,点G为AB的中点,过G作⊙O的割线交⊙O于点C、D,连接AC并延长交⊙O于点E,连接AD并交⊙O于点F,求证:EF∥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AD=PD=2,PA=2$\sqrt{2}$,∠PDC=120°,点E为线段PC的中点,点F在线段AB上.
(Ⅰ)若AF=$\frac{1}{2}$,求证:CD⊥EF;
(Ⅱ)设平面DEF与平面DPA所成二面角的平面角为θ,试确定点F的位置,使得cosθ=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式x2-2x+5-2a≥0.
(1)若不等式对于任意实数x恒成立,求实数a的取值范围;
(2)若存在实数a∈[4,$\sqrt{2016}}$]使得该不等式成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{a}$=(1,0,-1),$\overrightarrow{b}$=(1,-1,0),单位向量$\overrightarrow{n}$满足$\overrightarrow{n}$⊥$\overrightarrow{a}$,$\overrightarrow{n}$⊥$\overrightarrow{b}$,则$\overrightarrow{n}$=($\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=cos2x+3sinx的值域是(  )
A.$[{-4,\frac{17}{8}}]$B.$(-∞,-4)∪(\frac{17}{8},+∞)$C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合U={1,2,3,4,5,6},M={1,3,4},则∁UM(  )
A.{3,5,6}B.{1,3,5}C.{2,5,6}D.U

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列几种推理是演绎推理的是(  )
A.某校高二1班55人,2班54人,3班52人,由此推出高二所有班级人数超过50人
B.在数列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…),由此归纳数列{an}的通项公式
C.由平面三角形性质,推测空间四面体的性质
D.两直线平行,内错角相等,如果∠A与∠B是两条平行直线的内错角,则∠A=∠B

查看答案和解析>>

同步练习册答案