精英家教网 > 高中数学 > 题目详情

已知等比数列{an}中,an > 0,公比q∈(0,1), 且a1a5+2a3a5+a2a8=25, a3与a5的等比中项为2.

(1)求数列{an}的通项公式;

(2)设bn=log2an,求数列{bn}的前n项和Sn.

 

 

【答案】

解:(1)∵a1a5+2a3a5+a2a8=25,∴a32+2a3a5+a52=25, 

 

∴(a3+a5)2=25,  又an>0,∴a3+a5=5,

 

又a3与a5的等比中项为2,  ∴a3a5=4.

而q∈(0,1),   ∴a3>a5,∴a3=4,a5=1,  

∴q=,a1=16,  ∴an=16×()n-1=25-n.

 

(2)∵bn=log2an=5-n,   ∴bn+1-bn=-1,  b1=log2a1=log216=log224=4,

 

∴{bn}是以b1=4为首项,-1为公差的等差数列,    ∴Sn=.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案