精英家教网 > 高中数学 > 题目详情

【题目】如图,下面的表格内的数值填写规则如下:先将第1行的所有空格填上1;再把一个首项为1,公比为的数列依次填入第一列的空格内;其它空格按照任意一格的数是它上面一格的数与它左边一格的数之和的规则填写

1

2

3

1

1

1

1

1

2

3

1)设第2行的数依次为,试用表示的值;

2)设第3列的数依次为,求证:对于任意非零实数

3)能否找到的值,使得(2)中的数列的前成为等比数列?若能找到,的值有多少个?若不能找到,说明理由.

【答案】1 2)证明见解析(3)当且仅当时,数列是等比数列

【解析】

(1)依题意可求得,从而可求得的值;(2)求出,通过作差法比较的大小;(3)先设成等比数列,可求得q,求出,从而证明是一个公比为的等比数列.

(1)

所以

(2)

(3)先设成等比数列,由

,解得

此时,,所以是一个公比为的等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商家耗资4500万元购进一批(虚拟现实)设备,经调试后计划明年开始投入使用,由于设备损耗和维护,第一年需维修保养费用200万元,从第二年开始,每年的维修保并费用比上一年增40万元.该设备使用后,每年的总收入为2800万元.

(1)求盈利额(万元)与使用年数之间的函数关系式;

(2)该设备使用多少年,商家的年平均盈利额最大?最大年平均盈利额是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

1)根据频率分布直方图计算图中各小长方形的宽度;

2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

1

3

4

7

表中的数据显示,xy之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.

回归直线的斜率和截距的最小二乘法估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+2x4y+30

1)若直线lx+y0与圆C交于AB两点,求弦AB的长;

2)从圆C外一点Px1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM||PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):

学生

高一

高二

高三

满意

500

600

900

不满意

300

200

300

1)求从所有参与调查的人中任选1人是高三学生的概率;

2)从参与调查的高三学生中,用分层抽样的方法抽取4人,在这4人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司需要对所生产的三种产品进行检测,三种产品数量(单位:件)如下表所示:

产品

A

B

C

数量(件)

180

270

90

采用分层抽样的方法从以上产品中共抽取6.

1)求分别抽取三种产品的件数;

2)将抽取的6件产品按种类编号,分别记为现从这6件产品中随机抽取2.

(ⅰ)用所给编号列出所有可能的结果;

(ⅱ)求这两件产品来自不同种类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

(1)若=10,求yx的函数解析式;

(2)若要求“维修次数不大于的频率不小于0.8,求n的最小值;

(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的共有(

因为直线是无限的,所以平面内的一条直线就可以延伸到平面外去;

两个平面有时只相交于一个公共点;

分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上;

一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内;

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案