【题目】已知为等比数列的前项和,,若数列也是等比数列,则等于( )
A. 2n B. 3n C. D.
科目:高中数学 来源: 题型:
【题目】如图,OA,OB是两条互相垂直的笔直公路,半径OA=2km的扇形AOB是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB上新增一个入口P(点P不与A,B重合),并新建两条都与圆弧AB相切的笔直公路MB,MN,切点分别是B,P.当新建的两条公路总长最小时,投资费用最低.设∠POA=,公路MB,MN的总长为.
(1)求关于的函数关系式,并写出函数的定义域;
(2)当为何值时,投资费用最低?并求出的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(e=2.71828…),g(x)为其反函数.
(1)求函数F(x)=g(x)﹣ax的单调区间;
(2)设直线l与f(x),g(x)均相切,切点分别为(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求证:x1>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500ml以上为常喝,体重超过50kg为肥胖。
常喝 | 不常喝 | 合计 | |
肥胖 | 6 | 2 | 8 |
不肥胖 | 4 | 18 | 22 |
合计 | 10 | 20 | 30 |
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为。
(1)是否有的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(2)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
(参考公式:,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对任意x∈A,y∈B,(AR,BR)有唯一确定的f(x,y)与之对应,则称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”;
(1)非负性:f(x,y)≥0,当且仅当x=y时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出三个二元函数,请选出所有能够成为关于x、y的广义“距离”的序号:
①f(x,y)=|x﹣y|;②f(x,y)=(x﹣y)2;③ .
能够成为关于的x、y的广义“距离”的函数的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:① 函数的最小正周期是;② 终边在轴上的角的集合是;③ 在同一坐标系中,函数的图象和函数的图象有三个公共点;④ 把函数;;其中真命题的序号是( )
A. ①③ B. ①④ C. ②③ D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地一天中6时至14时的温度变化曲线近似满足函数T=Asin(ωt+φ)+B(其中<φ<π)6时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么图中曲线对应的函数解析式是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题是全称命题还是特称命题,并判断其真假.
(1)对数函数都是单调函数;
(2)至少有一个整数,它既能被11整除,又能被9整除;
(3)x∈{x|x>0}, ;
(4)x0∈Z,log2x0>2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com