A. | y=-2x-1 | B. | y=-2x+1 | C. | y=2x-1 | D. | y=2x+1 |
分析 先求切点A的坐标,设点A的坐标为(a,a2),故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而得到切线的方程进而求得面积的表达式.建立关于a的方程解之即得.最后求出其斜率的值即可,即导数值即可求出切线的斜率.从而问题解决.
解答 解:设点A的坐标为(a,a2),
过点A的切线的斜率为k=y'|x=a=2a,
故过点A的切线l的方程为y-a2=2a(x-a),
即y=2ax-a2,令y=0,得x=$\frac{a}{2}$,
则S=S△ABO-S△ABC=-($\frac{1}{2}$•$\frac{a}{2}$•a2-${∫}_{0}^{a}$x2dx)=$\frac{{x}^{3}}{3}$${|}_{0}^{a}$-$\frac{{a}^{3}}{4}$=$\frac{{a}^{3}}{12}$=$\frac{1}{12}$,
∴a=1,
∴切点A的坐标为(1,1),k=2,
∴过切点A的切线方程是y=2x-1.
故选C.
点评 本题主要考查利用导数研究曲线上某点切线方程、定积分的应用、直线的方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | |t1+t2| | B. | |t1-t2| | C. | $\sqrt{{a}^{2}+{b}^{2}}$|t1-t2| | D. | $\frac{|{t}_{1}-{t}_{2}|}{\sqrt{{a}^{2}+{b}^{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | k-1 | B. | k | C. | k+1 | D. | $\frac{k(k+1)}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 直角 | B. | 锐角 | C. | 钝角 | D. | 任意 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com