精英家教网 > 高中数学 > 题目详情
(2012•济宁一模)已知等差数列{an}的前n项和为An,且满足a1+a5=6,A9=63;数列{bn}的前n项和为Bn,且满足Bn=2bn-1(n∈N*)
(I)求数列{an},{bn}的通项公式ab,bn
(II)设cn=an•bn求数列{cn}的前n项和Sn
分析:(I)先通过条件求等差数列的首项和公差,对数列{bn}根据bn=Bn-Bn-1的关系,求通项公式.
(II)利用错位相减法求cn
解答:解:(I)设 {an}的首项为a1,公差为d,因为 a1+a5=6,得a1+2d=3.由A9=63,得a1+4d=7,两式联立解得a1=-1,d=2.
所以an=-1+2(n-1)=2n-3,n∈N
当n=1时,b1=2b1-1,解得b1=1.当 n≥2时,bn=Bn-Bn-1=2bn-2bn-1,即bn=2bn-1
所以数列{bn}是首项是1,公比为2的等比数列.所以bn=2n-1,n∈N
(II)因为cn=an•bn,所以cn=an?bn=(2n-3)?2n
Sn=-2+1?22+3?23+…+(2n-3)?2n   ①
2Sn=-22+1?23+3?24+…+(2n-3)?2n+1 ②
①-②得,-Sn=-2+2?22+2?23+…+2?2n-(2n-3)?2n+1=
2?22(1-2n-1)
1-2
-2-(2n-3)?2n+1
=
2?22(1-2n-1)
1-2
-2-(2n-3)?2n+1=2n+1-8-2-(2n-3)?2n+1=(4-2n)?2n+1-10

所以Sn=10-(4-2n)?2n+1,即数列{cn}的前n项和为Sn=10-(4-2n)?2n+1
点评:本题考查等差数列和等比数列的通项公式的求法,以及利用错位相减法解决一个等差数列和等比数列相成的数列的前n项和的问题.注意准算的准确性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•济宁一模)观察下列式子:1+
1
2
2
 
3
2
,1+
1
2
2
 
+
1
3
2
 
5
3
,1+
1
2
2
 
+
1
3
2
 
+
1
4
2
 
7
4
,…,根据上述规律,第n个不等式应该为
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)给出下列命题:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②命题“若am2<bm2,则a<b”的逆命题是真命题;
③f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2*.则x<0时的解析式为f(x)=-2-x
④若随机变量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是
①③④
①③④
.(写出所有你认为正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)若等边△ABC的边长为2
3
,平面内一点M满足
CM
=
1
3
CB
+
1
3
CA
,则
MA
MB
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则?U(A∪B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)已知
2
x
+
8
y
=1,(x>0,y>0),则x+y的最小值为(  )

查看答案和解析>>

同步练习册答案