【题目】已知f(x)=lnx,g(x)= x2+mx+ (m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x)﹣x+3,求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)< .
【答案】
(1)解:∵f'(x)= ,∴f'(1)=1.∴直线l的斜率为k=1,且与函数f(x)的图象的切点坐标为(1,0).
∴直线l的方程为y=x﹣1.
又∵直线l与函数y=g(x)的图象相切,
∴方程组 有一解.由上述方程消去y,并整理得
x2+2(m﹣1)x+9=0 ①
方程①有两个相等的实数根,∴△=[2(m﹣1)]2﹣4×9=0
解得m=4或m=﹣2;∵m<0∴m=﹣2
(2)解:由(1)可知g(x)= ﹣2x+ ,∴g'(x)=x﹣2
h(x)=f(x)﹣x+13=lnx﹣x+3(x>0).h'(x)= ﹣1= .
∴当x∈(0,1)时,h'(x)>0,当x∈(1,+∞)时,h'(x)<0.
∴当x=1时,h(x)取最大值,其最大值为2
(3)解:证明: f(a+b)﹣f(2a)=ln(a+b)﹣ln2a=ln .
∵0<b<a,0<
由(2)知当x∈(0,1)时,h(x)<h(1)∴即x∈(0,1)时,lnx﹣x+3<2,lnx<x﹣1
ln < .
∴f(a+b)﹣f(2a)<
【解析】(1)首先求出直线l方程为y=x﹣1,直线l与函数y=g(x)的图象相切,所以有x2+2(m﹣1)x+9=0方程有两个相等实根.(2)利用导数判断函数的单调性,直接求出函数的最大值即可;(3)由(2)知当x∈(0,1)时,h(x)<h(1),即x∈(0,1)时,lnx﹣x+3<2,lnx<x﹣1来证明.
【考点精析】根据题目的已知条件,利用函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】某单位建造一间背面靠墙的小房,地面面积为12m2 , 房屋正面每平方米造价为1200元,房屋侧面每平方米造价为800元,屋顶的造价为5800元,如果墙高为3m,且不计房屋背面和地面的费用,设房屋正面地面的边长为xm,房屋的总造价为y元.
(1)求y用x表示的函数关系式;
(2)怎样设计房屋能使总造价最低?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=n(n+1),
(1)求数列{an}的通项公式an
(2)数列{bn}的通项公式bn= ,求数列{bn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}为单调递增数列,首项a1=4,且满足an+12+an2+16=8(an+1+an)+2an+1an , n∈N* , 则a1﹣a2+a3﹣a4+…+a2n﹣1﹣a2n=( )
A.﹣2n(2n﹣1)
B.﹣3n(n+3)
C.﹣4n(2n+1)
D.﹣6n(n+1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知递增的等差数列{an},首项a1=2,Sn为其前n项和,且2S1 , 2S2 , 3S3成等比数列.
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下三个关于圆锥曲线的命题中:
①设A,B为两个定点,K为非零常数,若|PA|﹣|PB|=K,则动点P的轨迹是双曲线.
②方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率
③双曲线 与椭圆 +y2=1有相同的焦点.
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切
其中真命题为(写出所以真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)求证:AM⊥平面BDF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体的底面是边长为2的正方形, 底面, ,且.
(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
(Ⅱ)求直线与平面所成角的正弦值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com